Bioinformatics Research Centre Aarhus University

Predicting Protein Secondary Structure using Artificial Neural Networks with a focus on RNNs

Mathias Byskov Nielsen, 201506038

Supervisor: Christian Nørgaard Storm Pedersen Master's Thesis June 2020 Protein secondary structure prediction is a huge field and very important in order to determine a protein's overall three-dimensional structure. There has been a rapid development within the fields of genomics and proteomics the last decades, which makes the computational and statistical methods for structure-prediction more important than before [1]. This thesis investigates the field within protein secondary structure prediction. The dataset used to train all networks in this project is the publicly available CB513 dataset [2].

First, feedforward neural networks are presented along with the implementations and experiments conducted. The implementation presented is inspired by Qian and Sejnowski [3], which is a simple one-layer feedforward neural network. They claim to have obtained an accuracy of 64%. The implementation presented here obtains accuracy in the same range (63% - 65%).

Next, a recurrent neural network implementation is presented. Various different structures were investigated and the results are presented in chapter 7. The final implementation inspired by Heffernan and Yang [4] which involves a bidirectional LSTM-network obtained an accuracy of approximately 70%. The article by Heffernan and Yang claims to have obtained an accuracy of 83.9% on the CB513 dataset, although they trained their implementation on a dataset much larger than the original CB513.

CONTENTS

1	INT	RODUCTION 1
I	THEORETICAL BACKGROUND	
2	PROTEINS 4	
	2.1	General 4
	2.2	Structure 5
	2.3	Structure Determination 8
		2.3.1 X-Ray Crystallography 8
		2.3.2 NMR Spectroscopy 9
		2.3.3 Electron Microscopy 9
	2.4	Determining Secondary Structure from Atomic
		Coordinates 9
3	REP	RESENTATION OF STRUCTURE 12
	3.1	Primary Structure Representation 12
	3.2	Secondary Structure Representation 13
4	PROTEIN SECONDARY STRUCTURE PREDICTION 15	
	4.1	Prediction Accuracy Measures 15
	4.2	Hidden Markov Models 16
	4.3	Support Vector Machines 17
	4.4	Neural Networks 18
II	METHODS, IMPLEMENTATION & RESULTS	
5	DAT	ASET 21
	5.1	General information of the CB513 dataset 21
	5.2	Distributions in the CB513 dataset 21
6	FEE	DFORWARD NEURAL NETWORK 23
	6.1	Methodology 23
		6.1.1 Training a feedforward neural network 25
	6.2	Data Parsing 26

- 6.3 Implementation 28
- 6.4 Results 30
 - 6.4.1 Input Wrangling 31
 - 6.4.2 Architecture 34
 - 6.4.3 Optimizers 36
 - 6.4.4 Regularization 40
 - 6.4.5 Summary of FFNN Results 42
- 7 RECURRENT NEURAL NETWORK 43
 - 7.1 Methodology 43
 - 7.2 Data Parsing 44
 - 7.3 Implementation 46
 - 7.4 Results 48
 - 7.4.1 Bidirectional RNN 50
 - 7.4.2 Gated RNNs 52
 - 7.4.3 Structure proposed by Heffernan and Yang 55
 - 7.4.4 Summary of RNN results 57
- 8 CONCLUSION 58

III APPENDIX

- A APPENDIX 61
 - A.1 Amino Acid Letter Code 61
 - A.2 Amino Acid Distribution of CB513 62
 - A.3 Mathematical formulation of activation functions 63
 - A.4 Adam Algorithm: The update steps 63
 - A.5 Feedforward NN: Optimizers and batch-size 64
 - 02

65

- A.6 Calculating gradients in a RNN settingA.7 Calculations for the LSTM unit 66
- A.8 Gated Recurrent Unit 66