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Abstract

Metastatic melanoma is associated with notoriously high mortality rates. Immunother-

apy treatment of metastatic melanoma has increased overall survival rates. However,

less than 50% of patients respond to immunotherapy, and treatment can in some cases

have severe adverse side e↵ects. For this reason, it is of great interest to elucidate

the underlying reasons for why some patients respond to immunotherapy treatment

while other do not.

Multiple studies have linked immunotherapy response to the composition of the

gut microbiome, however attempts at identifying specific bacteria that consistently

associate with the response have so far been futile.

This thesis conducts a meta-analysis of ’pre-immunotherapy treatment’ faecal

shotgun metagenomic data from metastatic melanoma patients, with the aim of clar-

ifying whether it is possible to detect any clear signals in the data, that can predict

if a patient will respond to immunotherapy or not. This includes an exploration

of whether considering the community-structure of the microbiome rather than the

isolated e↵ect of individual microbial taxa can improve results.

This was achieved by the application and evaluation of machine learning methods

for classification of immunotherapy response based on microbial relative abundances.

Results indicate patterns in the data related to immunotherapy response are not

general, but instead a signal might be found within subgroups of similar individuals.

However, as the study is severely underpowered, no conclusive results can be drawn.

It is suggested that future e↵orts should be put into increasing the number and

quality of human microbiome studies, including consistent, standardized collection

of patient information. Furthermore the field would benefit from the creation of

standards for development and application of machine learning methods that allow

trustworthy interpretation of microbiome data, even for non-experts.
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AMP Antimicrobial peptide
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