Identifying Copy Number Signatures by Latent Dirichlet Allocation

An Analysis Performed on Data from the Cancer Genome Altas

Janne Auning Engestoft

Supervisor: Nicolai Juul Birkbak

Co-supervisor: Mateo Sokač

Bioinformatics Research Center

Aarhus University

June 2022

Student number: 201708061

Table of contents

Abstract
Introduction 4
Mechanisms of Copy Number Variation
Homologous Recombination
Non-Homologous Recombination
The Role of the Chromosome Architecture
Capturing Chromosomal Instability
Latent Dirichlet Allocation
The Algorithm
Methods 17
The Input
Experimenting with Feature Space
Final Features
The LDA Analysis
Subsequent Examination of Signatures
Association with age, sex, and CIN measures
Associated Reactome & Sanchez-Vega Pathways
Association with Oncogenes
Cox Proportional-Hazards Model
Validation
Results 24
The Signature Weights
Correlation & Hierarchical Clustering
Associated Reactome & Sanchez-Vega Pathways
Association With Oncogenes
Cox Proportional-Hazards Model
Validation of the LDA Model
Discussion 34

The Characterstics of the Signatures	34
Signature 1	34
Signature 2	36
Signature 3	37
Signature 4	37
Signature 5	38
The Validation	38
Model Adjustments	39
The Choice of Algorithm	39
Conclusion	40
f Acknowledgements	40
References	41
Appendix	49
Supplementary Figures	49

Abstract

Copy number variations (CNVs) play a key role in the instigation and progression of cancer and are associated with chromosomal instability (CIN), a state known to often confer poor patient prognosis. In fact, the continual gain and loss of chromosomes and chromosome segments, which is what characterises CIN, is thought to be the driving factor in several specific cancer types, such as high-grade serous ovarian carcinoma (HGSC).

Contrary to the mechanisms with which less complex genetic alterations are created, the underlying patterns of CNVs are not yet well characterised. This poses a challenge in the advancement of treatment in cancers with high rates of genetic aberrations, and thus the need for development of novel computational approaches is paramount.

This has led to the creation of this project, where the aim has been to identify the latent patterns of CNVs as signatures using latent Dirichlet allocation (LDA).

This resulted in the identification of 5 signatures, two of which were correlated with various CIN measures such as LST, HRD, and telomeric allelic imbalance. Simultaneously, three of the signatures were significantly associated with patient outcome across cancer types, where two of them were associated with survival, while a single one was associated with poor patient outcome.