Bayesian designs for first-in-human phase I trials in oncology

Léna Bonin

MASTER'S THESIS IN BIOINFORMATICS (30 ECTS) JUNE 2022

Supervisors: Associate professor Thomas Bataillon Head of statistics in early phase at Pierre Fabre group: David Jegou

> Bioinformatic Research Center (BiRC) Aarhus University Denmark

In collaboration with Pierre Fabre Group (France)

Acknowledgment

First, I would like to thank my supervisor at Pierre Fabre: David Jegou, for the opportunity to conduct my master's thesis in his department. I am grateful for his guidance and experience sharing.

I would also like to thank Eléna Dupuy for her availability, help and suggestions. I am also very grateful to Pierre Bunouf for discussions we had about statistical designs. Overall, I thank all colleagues from the Pierre Fabre biometry department for providing a pleasant and welcoming atmosphere.

Finally, I would like to thank Thomas Bataillon, for his advice and availability all along this master's thesis.

Abstract

First-in-human dose-escalation trials aim at determining the maximum tolerated dose (MTD) of a new treatment and its recommended phase II dose. In oncology, the tested compound is often toxic since it is expected that efficacy is linked to toxicity. As a result, phase I trials are conducted on diseased patients, resulting on challenging trials. Indeed, trials must keep the patients safe, while minimizing the number of patients treated at sub-therapeutic dose and finding the MTD quickly.

Different approaches exist to design these trials: rule-based, model-based and model-assisted designs. Since several years, regulatory agencies advocate the use of the latter two, since there are more flexible and enable for a better accuracy of the MTD. However, rule-based designs remain the most used methods in practice. This is because there are much easier to understand.

In this work, we highlights the limits of rule-based designs. Then, one model-assisted: the Bayesian Optimal Interval (BOIN) design and two-model based designs: the Continual Reassessment Method (CRM) and the Bayesian Logistic Regression Method (BLRM) are detailed. We study their operating characteristics: accuracy, and distribution of patients among doses. Finally, a comparison of these designs based on simulations is conducted. It demonstrates the superiority of the BOIN and the BLRM designs to provide an accurate MTD while balancing patients' safety and therapeutic opportunity.

Contents

Ir	Introduction			
1	Mo	tivations: Limits of the rule-based designs	3	
	1.1	Principle of rule-based designs	3	
		1.1.1 3+3 design	3	
		1.1.2 Variations of the $3+3$ design $(2+4, 3+3+3, \text{ accelerated titration designs})$.	4	
	1.2	Operating characteristics of rule-based designs	5	
		1.2.1 Scenarios for simulations	5	
		1.2.2 Simulation methodology for rule-based designs	8	
		1.2.3 Operating characteristics to study for rule based designs	8	
		1.2.4 Operating characteristics of the $3+3$ design $\ldots \ldots \ldots$	8	
		1.2.5 Can accelerated titration design achieve better operating characteristics than		
		the $3+3$ design?	11	
2	Mo	del-assisted and model-based designs	12	
	2.1	Introduction of novel-based adaptive Bayesian designs	12	
		2.1.1 Introduction of model-assisted designs: the Bayesian Optimal Interval (BOIN)		
		design	12	
		2.1.2 Introduction of model-based designs: the Continual Reassessment Method		
		(CRM) and Bayesian Logistic Regression Method (BLRM)	14	
	2.2	Operating characteristics of novel-based adaptive Bayesian designs	16	
		2.2.1 Simulation settings for novel-based adaptive Bayesian designs	16	
		2.2.2 Operating characteristics of the BOIN design	17	
		2.2.3 Operating characteristics of the CRM	22	
		2.2.4 Operating characteristics of the BLRM	27	
3	Op	erating characteristic comparison of the designs	31	
	3.1	Simulation plan	31	
		3.1.1 Global specifications	31	
		3.1.2 Specifications peculiar to each design	32	
	3.2	Analysis of operating characteristics	32	
		3.2.1 Ability to provide the correct recommendation	32	
		3.2.2 Distribution of patients among doses	35	
	3.3	Conclusion about design comparison	36	
D	iscus	sion and perspectives	38	
\mathbf{C}	onclı	ision	39	
R	eiere	ences	40	
Α	ppen	ndices	42	
		ppendices relative to Part 1: Motivations	42	
	ВA	ppendices relative to Part 2: Introduction of Bayesian adaptive designs	44	
		B.1 Flowcharts of Bayesian designs	44	
		B.2 Supplements concerning operating characteristics of Bayesian designs	45	
	-	ppendices relative to part 3: Comparison of designs	50	
	DΑ	ppendices relative to the discussion	51	

List of Figures

1	Flowchart of the $3+3$ design	3
2	Flowchart of the accelerated titration design	5
3	Percentage of correct recommendation at the end of the trial, for each scenario	9
4	Distance between MTD provided by the 3+3 design and the correct recommendation	10
5	Mean number of underdosed, correctly dosed and overdosed patients per scenario	10
6	Illustration of the BOIN's interval boundaries	13
7	Percentage of trials that yield the correct recommendation with the BOIN design	18
8	Distance from correct recommendation with the BOIN design	19
9	Number of correctly dosed patients, underdosed patients and overdosed patients with	
	the BLRM design	21
10	Distance between the CRM recommendation and the correct recommendation	24
11	Number of correctly dosed patients, underdosed patients and overdosed patients with	
	the BLRM design	25
12	Percentage of correct recommendation with the BLRM and distance from correct	
	recommendation	28
13	Number of correctly dosed patients, underdosed patients and overdosed patients with	
	the BLRM design	30
14	Percentage of correct recommendation provided by the different designs	33
15	Distance between the provided recommendation and the correct one (in number of	
	dose levels), for the different designs	34
16	Distance between the provided recommendation toxicity and the targeted one, for the	
	different designs	35
17	Proportion of correctly dosed patients, underdosed patients and overdosed patients	
	with the different designs	37
18	Flowchart of the BOIN design	44
19	Flowchart of the CRM	44
20	Flowchart of the BLRM	44
21	Percentage of correct recommendation with the CRM, by prior and model	46
22	Number of correctly dosed patients with the CRM, by prior and model	47
23	Number of overdosed patients with the CRM, by prior and model	47
24	Number of underdosed patients with the CRM, by prior and model	48

List of Tables

	1	Dose-toxicity scenarios used for simulations	7
	2	Percentage of correct recommendation made by the CRM design	23
	3	Scenarios of true toxicities used to compare our 3+3 simulation function and the one	
Г		from the UBCRM package Values in the table correspond to the true DLT probability at each	
		dose level	42
	4	Operating characteristics for the 6 simulated scenarios with the $sim 3p3$ function from	
		the UBCRM package. Based on 10,000 simulations per scenarios No recommendation	
		percentage provides the percentage of trials for which the first dose is found to be too toxic \ldots .	42
	5	Operating characteristics for the 6 simulated scenarios with our 3+3 simulation func-	
		tion. Based on 10,000 simulations per scenarios No recommendation percentage provides	
		the percentage of trials for which the first dose is found to be too toxic	42
	6	Difference in the number of patients, number of underdosed patients and number of	
		overdosed patients between the simulations of the AT designs and the one of the $3+3$	
		design	43
	7	Percentage of correct recommendations made by the BOIN design	45
	8	Percentage of correct recommendations made by the BLRM	49
	9	Percentage of correct recommendation provided by the different designs	50
	10	Change in operating characteristics when the number of investigated dose under a	
		$3+3$ design increases \ldots	51
	11	Change in operating characteristics when the number of investigated dose under a	
		BOIN design increases	51
	12	Change in operating characteristics when the number of investigated dose under a	
		CRM increases	52
	13	Change in operating characteristics when the number of investigated dose under a	
		BLRM design increases	52

Glossary

MTD: Maximum Tolerated Dose

DLT: Dose Limiting Toxicity

BOIN: Bayesian Optimal Interval

CRM: Continual Reassessment Method

BLRM: Bayesian Logistic Regression Method

EWOC: Escalation With Overdose Control