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Abstract

A revolution in DNA sequencing technologies has enhanced our ability to gain deeper
insights into microbial community interactions enabling the exploration of new frontiers in
environmental and medical microbiology. However, correlation-based association analysis
used in most microbiome studies is noninformative of causal relationships between internal
and external factors. To address this limitation, we explored the potential of a recently
developed causal discovery method, PCMCI, to reconstruct the causal dependency graphs
underlying microbial interactions. The PCMCI framework was tested together with the
conditional independence test ParCorr on real-world data and two artificial time series
datasets with known dependencies that mimic the properties of real-world microbial data.

The real-world dataset was highly relevant regarding the microbial community in the
anaerobic digestion of complex wastewater. However, the underlying experiment that created
the data was not adapted to causal discovery in time series. To improve the data for future
experiments, the results suggested a higher time resolution, larger sample size, and a system
under steady-state conditions to obey the assumptions under which the underlying causal
dependencies can be inferred.

The artificial data were simulated with a stochastic generalized Lotka-Volterra model that
only allowed for weak interactions between the species in order for the time series not to be
unstable. In the first experiment with synthetic data, three interacting species were simulated.
For this dataset, PCMCI was not able to recover the underlying causal structure. The second
synthetic dataset was simulated with an artificially created variable Z that depended on
two noninteracting microbial species. This model system allowed for more significant
interactions between the variables, and PCMCI captured the underlying causal structure with
a true positive rate of 100 %. For both synthetic datasets, the false positive rate fulfilled the
requirement of the significance level of 5 %, indicating a well-calibrated test due to fulfilled
assumptions. As expected by the linear multiplicative noise term in the generalized Lotka-
Volterra model, the type dependencies of the noise were heteroskedastic. This suggests using
an adapted version of the ParCorr conditional independence test customized heteroskedastic
data for future studies on causal discovery on microbial data with PCMCI.
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