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A B S T R A C T

This thesis presents a GPU-based and FPGA-based implementation
of a global sequence alignment algorithm. The proposed approach is
based on the Needleman-Wunsch algorithm, which is widely used
in bioinformatics for pairwise sequence alignment. Two implementa-
tions have been developed using Apple’s Metal API for a GPU im-
plementation, and Verilog for an FPGA implementation. The results
show that both approaches achieve a notable speedup compared to
equivalent non-accelerated implementations.
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UMA Unified Memory Architecture

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

SoC System-on-Chip

SIMD Single Instruction/Multiple Data

FGMT Fine-Grained Multithreading

HDL Hardware Description Language

CLB Configurable Logic Block

GCUPS Giga Cell Updates Per Second

HVL Hardware Verification Language

PU Processing Unit
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