
H A R D WA R E A C C E L E R AT E D S O L U T I O N S
F O R S E Q U E N C E A L I G N M E N T

A C C E L E R AT I N G G L O B A L A L I G N M E N T W I T H
G P U - B A S E D A N D F P G A - B A S E D S O L U T I O N S

sam martin vargas giagnocavo, AU703393

master’s thesis

June 2023

Advisor: Christian Storm Pedersen

DEPARTMENT OF COMPUTER SCIENCE

AARHUS
UNIVERSITY AU

H A R D WA R E A C C E L E R AT E D S O L U T I O N S F O R S E Q U E N C E
A L I G N M E N T

Accelerating global alignment with GPU-based and FPGA-based solutions

sam

Master’s Thesis

Department of Computer Science
Faculty of Natural Sciences

Aarhus University

June 2023

Sam: Hardware Accelerated Solutions for Sequence Alignment, Master’s
Thesis © June 2023

A B S T R A C T

This thesis presents a GPU-based and FPGA-based implementation
of a global sequence alignment algorithm. The proposed approach is
based on the Needleman-Wunsch algorithm, which is widely used
in bioinformatics for pairwise sequence alignment. Two implementa-
tions have been developed using Apple’s Metal API for a GPU im-
plementation, and Verilog for an FPGA implementation. The results
show that both approaches achieve a notable speedup compared to
equivalent non-accelerated implementations.

v

C O N T E N T S

1 introduction 1
2 the sequence alignment problem 5

2.1 Pairwise Alignment 5
2.2 Multiple Sequence Alignment 8

3 related work 11
3.1 Background 11
3.2 State of the art for GPU accelerated sequence alignment

workloads 14
3.3 State of the art for FPGA accelerated sequence align-

ment workloads 18
4 swiftseqal : the swift sequence alignment library 23

4.1 Developing a Bioinformatics-specific library 24
4.2 Threads, Warps and Threadgroups 25
4.3 Submitting Work to the GPU with Metal 26
4.4 Accelerating the alignment using SIMD-group Func-

tions 27
4.5 A note on the makeBuffer function 30
4.6 Assessing performance during development: XCTest and

XCode’s Instruments 32
4.7 GUI 34

5 verilator and the xilinx spartan 7 37
5.1 The Verilator testbench 37
5.2 Implementing the PU from a Systolic Array 39
5.3 Transitioning to Hardware 42

6 evaluation 45
6.1 Testing the “bytesNoCopy" option 45
6.2 CPU vs GPU 46
6.3 Testing the FPGA simulation 48

7 conclusion 49
7.1 Future Work 50

i appendix 53
a haseal 55
b field programmable gate arrays 57

b.1 Synthesis 57
b.2 Verilator 57

bibliography 59

vii

L I S T O F F I G U R E S

Figure 1 How mutations affect the resulting sequence.
Graphic from the University of Leicester. 1

Figure 2 The traceback step on both alignment algorithms. 8
Figure 3 Optimal alignment visualization for three se-

quences. 10
Figure 4 Inner layout of a configurable logic block. 14
Figure 5 Latency comparison for computing the prod-

uct of an array. 15
Figure 6 Keeping values using shared memory (left) and

local registers (right) for aligning two sequences. 16
Figure 7 Reduced solution space in a dynamic program-

ming implementation. 19
Figure 8 Processing diagonals in the dynamic program-

ming table. 28
Figure 9 Graphical representation of Listing 5. Exam-

ple extracted from Oxford University Math-
ematical Institute, CUDA Programming, Lec-
ture 4. 29

Figure 10 The SIMD group implementation of the algo-
rithm. 29

Figure 11 Using XCode’s Instruments to compare per-
formance metrics for different iterations of the
code. 34

Figure 12 Opening a FASTA file in HASeAl. 35
Figure 13 Circuit design overview of a processing ele-

ment from a systolic array. 40
Figure 14 Comparison of Metal buffers created with and

without the bytesNoCopy option. 46
Figure 15 GPU allocation, deallocation and compute events

recorded during testing. 47
Figure 16 Verilator simulation results. Cycles required to

read from memory are not included in the sim-
ulation. 48

Figure 17 Warp 1 executes the first subset of values. Warp
1 and warp 2 continue computing the table
from the values the were originally computed
by warp 1. 50

Figure 18 Startup screen for the application. At the right
pane, a list with the latest files used with the
program. 55

viii

Figure 19 Sequence view of the selected FASTA file. At
the bottom, specific sequence info. 55

Figure 20 Raw sequence view. Users can view the raw
FASTA file that was selected. 56

Figure 21 Integration with macOS allows displaying re-
cent files in the mission control view. 56

Figure 22 Output of the synthesis process exported as an
SVG file. File generated by the Yosys frame-
work. 57

Figure 23 Value changes as recorded in the “waveform.wcd"
file. 58

L I S T O F TA B L E S

Table 1 Performance comparison obtained from the for-
ward pass of the Needleman-Wunsch algorithm.
Each row represents a different sequence length
(bp, base pairs). Runtimes are represented in
seconds. 47

L I S T I N G S

Listing 1 Gap openings in different sequences. Format-
ted according to the FASTA format. 6

Listing 2 A simple Verilog module containing a condi-
tional assignment. 12

Listing 3 Computing the linear index from a multidi-
mensional index. 24

Listing 4 An example of conditionals to avoid in a com-
pute shader. 25

Listing 5 Sample code extracted from Oxford University
Mathematical Institute, CUDA Programming,
Lecture 4. 28

Listing 6 Creating a page buffer from a page-aligned ad-
dress. 31

Listing 7 Main function from a sample Verilator testbench. 38
Listing 8 Connectivity from different modules within a

slide. 41

ix

x acronyms

A C R O N Y M S

UMA Unified Memory Architecture

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

SoC System-on-Chip

SIMD Single Instruction/Multiple Data

FGMT Fine-Grained Multithreading

HDL Hardware Description Language

CLB Configurable Logic Block

GCUPS Giga Cell Updates Per Second

HVL Hardware Verification Language

PU Processing Unit

Man only likes to count his troubles;
he doesn’t calculate his happiness.

— Fyodor Dostoevsky

A C K N O W L E D G M E N T S

Special thanks to my supervisor, Prof. Christian Storm Pedersen, and
to all the wonderful people I have met at the Bioinformatics Research
Center.

xi

