

StructUnet

Deep Learning Based Approach for RNA Secondary Structure Prediction

Maria Eskerod Sørensen Student ID: 201708588

Supervisor: Christian Storm Pedersen

Bioinformatic Research Center Aarhus University Aarhus, Spring 2024

Abstract

The molecular processes within cells are crucial for the life of all living organisms. Many of these processes are orchestrated by RNA molecules, which come in various types and fulfill a wide range of functions in cellular processes. Understanding the structure of RNA molecules is essential for comprehending their functions. Due to the challenges in experimentally determining RNA structure, developing accurate RNA secondary structure prediction methods has been an ongoing research focus since the 1970s.

This thesis explores the use of neural networks for RNA secondary structure prediction by developing a novel deep neural network, called StructUnet, and comparing it to existing models. The study includes a thorough examination of both algorithmic approaches and other neural network-based models, emphasizing their mechanisms and results. The fundamentals of RNA secondary structures and neural networks are discussed in depth, providing a foundation for understanding the context of this research. Traditional methods, including classical algorithmic approaches, Stochastic Context-Free Grammars (SCFG), and various machine learning and deep learning techniques, are reviewed. The development process of StructUnet involved numerous experiments, iteratively refining the architecture to optimize performance. The final model was extensively tested and compared with existing models. The proposed neural network demonstrates superior results, particularly in predicting pseudoknots, with significant improvements in F1 score metrics. The results show that StructUnet outperforms classical algorithmic approaches and other neural network-based models. Additionally, the model exhibits robust performance across various RNA types and lengths, showcasing its versatility and reliability. Despite these advancements, the model has certain limitations. These include stringent assumptions about RNA secondary structures and a limited dataset size, which may affect the generalizability of the findings. These constraints are critically examined, and potential avenues for future research are suggested. Future work should focus on relaxing the assumptions about RNA structures and expanding the dataset to include more diverse RNA sequences, which would likely enhance the model's accuracy and applicability.

Overall, this research contributes to the field of RNA secondary structure prediction by providing a powerful neural network-based approach that surpasses existing methods. It opens new avenues for leveraging deep learning in understanding and predicting RNA structures, which could have significant implications for biological research and applications.

Contents

1	Intr	oduction	1
	1.1	RNA Secondary Structure	1
	1.2	Neural Networks	3
		1.2.1 Structure and Function of Neural Networks	4
		1.2.2 Training Neural Networks	5
		1.2.3 Convolutional Neural Networks	7
		1.2.4 Application of Neural Networks in Bioinformatics	9
	1.3	Bridging Neural Networks and RNA Secondary Structure Prediction	9
	1.4	Related Work	10
		1.4.1 Algorithms Based on Energy Minimization	10
		1.4.2 Machine Learning-based Methods	13
		1.4.3 Deep learning	14
	1.5	Problem Definition	17
2	Met	hods and Materials	19
	2.1	Datasets	19
	2.2	Input and Output Representation	21
		2.2.1 Input	21
		2.2.2 Output	21
	2.3	Neural Network	21
		2.3.1 Experiments	23
		2.3.2 Training	24
	2.4	Post-processing	24
		2.4.1 Blossom Algorithm	25
		2.4.2 HotKnots	26
		2.4.3 Other Post-Processing Methods	26
	2.5	Evaluation and Comparing to Benchmarks	26
		2.5.1 Violin Plots	28
		2.5.1 Violin Plots	28 28

	2.6	Computer	29		
3	Resi	sults			
	3.1	Model Optimization trough Experiments	31		
		3.1.1 Experiment 1: Input Type Evaluation	31		
		3.1.2 Experiment 2: Loss Function and Down-Sampling Evaluation	33		
		3.1.3 Experiment 3: Model Architecture Evaluation	33		
		3.1.4 Final Model Selection	33		
	3.2	Training	34		
	3.3	Post processing	35		
		3.3.1 Hotknots	36		
		3.3.2 Comparison of Time	37		
		3.3.3 Evaluation with Trained Model	38		
	3.4	Evaluation on Unseen Data	38		
		3.4.1 Sequence-Wise and Family-Wise Cross Validation	40		
		3.4.2 Analysis of Time	41		
	3.5	Comparison with Other Methods	42		
		3.5.1 Comparison between Methods Based on Energy Minimization	42		
		3.5.2 Comparison of StructUnet to Other Methods	43		
		3.5.3 Notes on Implementation of Nussinov	47		
4	Disc	cussion 4	4 9		
	4.1	Experimental Design and Data	49		
	4.2	Input and Output Choices: Implications and Considerations	49		
	4.3	Loss Function Selection and Impact			
	4.4	Choice of Post-processing Techniques	52		
	4.5	Impact of limitations	54		
	4.6	Sequence Identity in RNA Structure Prediction	55		
	4.7	Potential of Multi-Task Learning	55		
	4.8	Model Performance Evaluation	56		
		4.8.1 Precision and Recall analysis			

Re	References						
Code and Data Availability							
5	Con	clusion		63			
		4.9.3	Data Availability	61			
		4.9.2	Other Improvements	61			
		4.9.1	Based on Outlined Findings	60			
	4.9	Future	Work	59			
		4.8.3	Impact of Available Data	59			
		4.8.2	Reevaluation of Assumptions	57			