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Abstract

Motivation

microRNAs play an important role in regulating gene expression at a posttran-
scriptional level. In cancer cells, miRNAs are often dysregulated, acting as either
oncomiRs or tumor suppressors. Therefore, understanding miRNA regulation is
important in cancer research and potentially elsewhere. However, there are limi-
tations to studying miRNAs in single-cell RNA sequencing (scRNA-seq) settings.
The state-of-the-art to infer miRNA expression levels involves several computa-
tional approaches that leverage the relationship between miRNAs and their target
mRNAs, including motif enrichment analysis and machine learning models like
XGBoost. This thesis aims to explore and evaluate the ability of generative Al
approaches to improve the prediction of miRNNA expression levels from gene ex-
pression data in bulk RNA-seq and scRNA-seq settings.

Results

We present the miDGD, a Deep Generative Decoder (DGD) model that can in-
fer miRNA activity levels based on only gene expression data. The miDGD model
learns the shared representation of gene and miRNA expression and handles com-
plex parameterized latent distributions. The result shows that miDGD model can
be used to predict miRNA expression in bulk RNA-seq and sparse data equivalent
to scRNA-seq experiments.
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Abbreviations

ACC Adrenocortical Carcinoma.

BLCA Bladder Urothelial Carcinoma.

BRCA Breast Invasive Carcinoma.

CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma.
CHOL Cholangiocarcinoma.

COAD Colon Adenocarcinoma.

DGD Deep Generative Decoder.

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma.
ESCA Esophageal Carcinoma.

GMM Gaussian Mixture Model.

HNSC Head and Neck Squamous Cell Carcinoma.

KICH Kidney Chromophobe.
KIRC Kidney Renal Clear Cell Carcinoma.

KIRP Kidney Renal Papillary Cell Carcinoma.

LAML Acute Myeloid Leukemia.

LGG Brain Lower Grade Glioma.
LIHC Liver Hepatocellular Carcinoma.
LUAD Lung Adenocarcinoma.

LUSC Lung Squamous Cell Carcinoma.
MESO Mesothelioma.
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OV Ovarian Serous Cystadenocarcinoma.

PAAD Pancreatic Adenocarcinoma.

PCPG Pheochromocytoma and Paraganglioma.

PRAD Prostate Adenocarcinoma.
READ Rectum Adenocarcinoma.

SARC Sarcoma.
scRNA-seq Single-cell RNA sequencing.
SKCM Skin Cutaneous Melanoma.

STAD Stomach Adenocarcinoma.

TCGA The Cancer Genome Atlas.
TGCT Testicular Germ Cell Tumors.
THCA Thyroid Carcinoma.

THYM Thymoma.

UCEC Uterine Corpus Endometrial Carcinoma.

UCS Uterine Carcinosarcoma.
UTR Untranslated Region.

UVM Upveal Melanoma.
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