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Abstract

Deep learning has shown promise in automating medical image analysis, par-
ticularly in predicting diabetic retinopathy (DR), a diabetes-related eye condition
that can lead to blindness. The study Nakayama et al. (2024a) reports strong per-
formance (AUC-ROC = 0.97 for the ConvNeXtv2 model) using two convolution
neural networks (CNNs) on retinal fundus images. However, critical limitations
remain in the study, such as lack of reproducibility, reliance on data leakage
datasets, lack of external validation, limited model architectures, and narrow
evaluation metrics.

This thesis addresses these gaps by investigating model reproducibility, data
leakage, model architecture and size, data efficiency, and external validation. Re-
cent advances in large foundation models have demonstrated strong generalization
capabilities across domains, including medical imaging. In addition to CNN-based
models, the study evaluates vision transformer-based (ViTs) foundation models,
including DINOv2, RetFound, and VisionFM. Evaluation metrics include conven-
tional measures like macro AUC-ROC and F1-score, alongside clinically relevant
tools such as calibration curves and the Polytomous Discrimination Index (PDI),
which is an extension of AUC-ROC for multi-class classification.

The results show that reproduced patient-stratified models has lower perfor-
mance (AUC-ROC = 0.93 for the ConvNeXtv2 model). The larger ViT models
do not outperform CNNs. Ine general, all models show poor calibration affects
the reliability of the models. External validation further reveals challenges in
generalizability (AUC-ROC = 0.56 for the ConvNeXtv2 model). These findings
emphasize the need for rigorous, multifaceted evaluation in developing Al tools
for clinical use and caution against over-interpreting results from studies that rely

on limited validation or narrow evaluation criteria.
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