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Abstract 

MicroRNAs (miRNAs) play crucial role as post-transcriptional regulators, however, the sequence 

variants of this small RNAs are capable of posing significant impact in mRNA functions by 

changing gene regulatory network in cancer.  This study introduces a machine learning framework 

named ML-miRNA which helps to predict the functional effects of miRNA variants across 13 

human cell lines (includes both immortalized and cancer cell lines). We analyzed a complete 

library consist of cell growth expression of those cell lines against 3,311 miRNA sequences (after 

filtration), which include 800 canonical miRNAs and five classes of positional and shift variation 

for each canonical sequence. A total of 123 sequence-based features, including nucleotide 

composition, seed/flank k-mers, and positional motifs, were extracted at first and then reduced to 

31 essential features using a pipeline utilizing correlation filtering, a hierarchical feature-protection 

scheme and biological relevance. We evaluated the performance of Random Forest and XGBoost 

algorithms across three preprocessing methods (raw, z-score, log₂-fold-change). Our findings 

suggests that a hyperparameter-tuned Random Forest using log₂-fold-change data produces the 

highest performance, with a mean R² of approximately 0.46 ± 0.02, surpassing all other 

configurations. Analysis of feature importance indicated that seed-region G-content and overall 

GC percentage are the primary predictors of variant impact, which eventually supports the finding 

from previous studies on seed-centric toxicity. This framework is capable of identifying both 

universal and cell-specific sequence features of miRNA sequence, making it a useful tool for 

finding/selecting variants for further experimental validation. We believe that this study will 

provide some help to improve the understanding importance of different sequence features as it 

combines the domain knowledge with strong machine learning methodologies to predict the 

functional effects of miRNA variants in different cell line settings.  
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Chapter 1: Introduction 

MicroRNAs (miRNAs) are short RNA molecules, approximately 20–24 nucleotides in length, that 

regulate gene expression.  The Argonaute-miRNA complex interacts with complementary 

sequences in messenger RNAs (mRNAs), resulting in either the inhibition of protein synthesis or 

the degradation of the mRNA. In humans, more than 2,600 mature miRNAs collectively regulate 

over 60% of protein-coding genes, therefore building dense regulatory networks essential for 

development, differentiation, stress responses, and disease homeostasis (Friedman et al., 2009; 

Treiber et al., 2019).  

In oncology, miRNAs can act as either oncogenes (“oncomiRs”) or tumor suppressors, depending 

on their expression levels and targets availability. Dysregulated miRNA profiles are associated 

with tumor initiation, progression, metastasis, and drug resistance (Rupaimoole & Slack, 2017; 

Condrat et al., 2020). To give just a few examples, the loss of the helpful miR-34a accelerates the 

growth of cancers that have mutated p53, and excessive levels of the bad miR-21 helps tumors to 

spread and become resistant to treatment in many cancers. This duality highlights the potential of 

miRNAs as biomarkers and therapeutic agents in oncology. 

Even though a lot of work has been done to list changes in miRNA expression in cancer, it's still 

hard to predict how different sequence variants—like single-nucleotide polymorphisms, RNA 

editing, somatic mutations, and differences in isomiR processing—affect miRNA function. 

Variants in the important "seed" area (nucleotides 2–8) can change how miRNAs target other 

molecules, which can either enhance or reduce their function and lead to significant changes in 

traits. Early studies on siRNA showed that the frequency of matching hexamer seeds can predict 

unwanted effects (Anderson et al., 2008), and later tests of all 4,096 possible 6-mer seeds found 

that G-rich patterns can be harmful by targeting genes that help cells survive (DISE mechanism) 

(Gao et al., 2018). However, these studies mainly looked at how seeds affect siRNAs or single 

miRNAs, creating a gap in understanding how variants impact entire miRNA sequences and 

different cell types in a systematic and measurable way. 

Current in silico tools mainly focus on predicting targets (like TargetScan, miRanda, PITA) by 

estimating how well they bind based on seed complementarity and site accessibility (Gebert & 

MacRae, 2019). While valuable, they do not model how sequence variants disturb global 

regulatory function, nor do they account for cell-type–specific expression landscapes. Machine-

learning tools in miRNA biology have mostly focused on specific tasks, like scoring miRNA–

mRNA interactions or classifying isomiRs, but they haven't created a broad system to predict how 

variants affect different cancer cell lines. 

 



2 | P a g e  
 

Objectives  

This thesis presents ML-miRNA, a machine-learning framework aimed at predicting the functional 

implications of miRNA sequence variants in cancer cell lines. The primary contributions are as 

follows: 

• Systematic Variant Library: A systematic variant library was developed, containing 

5,574 unique miRNA sequences. This includes 800 canonical miRNAs and five classes of 

positional substitutions and shift variants, aimed at understanding the roles of seed and 

flanking regions. 

• Comparison of Preprocessing Strategies: We assessed raw, z-score normalized, and 

log₂-fold-change transformations to identify the most effective representation of expression 

data for modeling purposes. 

• Feature Engineering Overview: We reduced an initial set of 123 sequence-based 

descriptors, which included nucleotide composition, seed/flank k-mers, and positional 

motifs, to 31 biol ogically relevant features. This was achieved through correlation 

filtering, followed by a feature-protection hierarchy to preserve essential features. 

• Algorithmic Evaluation and Interpretability: We thoroughly compared the performance 

of Random Forest and XGBoost models using an algorithmic evaluation under several 

preprocessing settings. We also found major sequence determinants using feature-

importance measures. 

• Cross-Cell-Line Validation: Profiling variant effects across 13 different cancer cell lines 

helped to identify both universal and context-specific regulating patterns, hence improving 

the use of variant-effect prediction in cell line. 

Structure of the Thesis 

• Chapter 2 reviews miRNA biogenesis, variant mechanisms, and existing computational 

methods. 

• Chapter 3 describes the engineered variant library, feature-engineering pipeline, data 

transformations, and modeling workflows. 

• Chapter 4 presents model performance results, hyperparameter tuning outcomes, and 

feature‐importance analyses. 

• Chapter 5 discusses methodological rationale, biological implications, integration with 

AI/ML paradigms, limitations, and future directions. 

• Chapter 6 concludes by summarizing contributions and outlining translational prospects 

for ML-miRNA in clinical and research applications. 

Through this work, we hope to close the gap between sequence variation and functional outcome 

by offering a strong, interpretable method for classifying miRNA variants for experimental 

validation and cancerous treatment research. 
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Chapter 2: Background 

2.1 Introduction to MicroRNAs 

miRNAs (microRNAs) are short and evolutionarily conserved non-coding RNAs, which represent 

significant controllers of eukaryotic gene expression. This ~22 nucleotide-sized molecules usually 

act as vital post transcriptional regulators of gene expression in all metazoans through base-pairing 

with complementary sequences in target messenger RNAs (mRNAs) (Bartel, 2018; O'Brien et al., 

2018). After they were first discovered in the Caenorhabditis elegans in the early 1990s (Lee et al., 

1993), miRNAs have become fundamental in nearly every physiological and pathological process, 

including development, differentiation, immune regulation, metabolism, and disease progression 

(Treiber et al., 2019; Bartel, 2018). 

According to miRBase v22 (Kozomara et al., 2019), the human genome encodes for more than 

2,600 mature miRNAs, while, more exact estimates suggest that the actual count of real miRNAs 

could be less (Fromm et al., 2020). More than 60% of human protein-coding genes are expected 

to be influenced by these miRNAs, hence generating complex regulatory networks that maintain 

cellular homeostasis (Friedman et al., 2009; Hill & Tran, 2021). Whereas individual mRNAs may 

be controlled by various miRNAs, each miRNA can target many mRNAs, hence creating a 

complex layer of post-transcriptional control (Gebert & MacRae, 2019). 

MicroRNAs primarily operate by partially base-pairing with target mRNAs, mainly in the 3' 

untranslated regions (3'UTRs), resulting in translational repression or mRNA degradation (Jonas 

& Izaurralde, 2015). Recent studies indicate that mRNA degradation is the primary mechanism of 

miRNA-mediated repression in mammalian cells, while translational repression is of secondary 

importance (Eichhorn et al., 2014; Gebert & MacRae, 2019). The specificity of miRNA targeting 

is largely determined by the "seed" region, which includes nucleotides at position 2-8 from the 5' 

end of the miRNA. However, recent findings indicate a more complex mechanism in target 

recognition (McGeary et al., 2019; Sheu-Gruttadauria et al., 2019). 

In clinical contexts, the expression of miRNA profiles has been associated with a wide range of 

diseases, particularly in cancer, cardiovascular disease, and neurodegeneration. MicroRNAs can 

act as oncogenes or tumor suppressors, depending on their targets and the tissue from which they 

originate (Plotnikova et al., 2019). The dual role of miRNAs, along with their stability in biofluids 

and potential for therapeutic modulation, has generated significant interest in their application as 

diagnostic biomarkers and therapeutic agents (Rupaimoole & Slack, 2017; Condrat et al., 2020).  

2.2 MicroRNA Biogenesis Pathway 

MicroRNA (miRNA) biogenesis is a precisely controlled multistep process that controls the 

maturity of these about 22-nucleotide regulating molecules. This pathway can be divided into 

canonical and non-canonical routes, each with different purposes in miRNA diversity and activity. 
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2.2.1 Canonical miRNA Biogenesis  

Starting with the transcription of pri-miRNAs by RNA polymerase II, the canonical miRNA 

pathway begins. Typically, pri-miRNAs are lengthy, capped, polyadenylated transcripts labeled 

by one or more hairpin structures. The Microprocessor Complex, comprising the RNase III 

enzyme Drosha and its cofactor DGCR8, cleaves the pri-miRNA in the nucleus, releasing a ~70-

nucleotide precursor miRNA (pre-miRNA) hairpin (Kim et al., 2024; Bartel, 2018). Exportin-5 

transfers the pre-miRNA to the cytoplasm in a Ran-GTP-dependent fashion. The RNase III 

enzyme Dicer further digests the pre-miRNA in the cytoplasm to a ~22 nucleotide miRNA duplex 

(Figure 2.1 a). One of the two strands of this duplex, the so-called guide strand, is specifically 

incorporated into an Argonaute (AGO) protein to constitute the RNA-induced silencing complex 

(RISC), whereas the other passenger strand is usually degraded. The guide strand subsequent leads 

the complex to complementary target mRNAs to repress or degrade them, mostly through seed 

region interactions (McGeary et al., 2019). 

2.2.2 Non-canonical Biogenesis Pathways 

As well as the canonical pathway, several non-canonical pathways have been identified, showing 

the flexibility of miRNA generation. One of these pathways is through mirtrons, which are short 

introns that form hairpin structures and avoid processing by Drosha. These mirtrons are then 

exported after splicing and debranching, and are cleaved by Dicer like canonical pre-miRNAs 

(Westholm & Lai, 2011) (Figure 2.1 b left). 

Another notable exception is pre-mir-451, which bypasses Dicer processing owing to its unusually 

short stem of 17 base pairs (Cheloufi et al., 2010). Instead, pre-mir-451 is cleaved by Ago2's 

endonuclease activity, followed by trimming by the poly(A)-specific ribonuclease (PARN) to 

generate the mature miRNA (Yoda et al., 2013). This pathway (Figure 2.1 c) demonstrates 

remarkable flexibility in miRNA biogenesis and highlights the central role of Argonaute proteins. 
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In total, the diversity of miRNA biogenesis pathways and regulatory mechanisms highlight the 

cellular requirement of a versatile but strict regulation of gene expression. Both canonical and non-

Figure 1: a, Canonical microRNA (miRNA) biogenesis.  b, Non-canonical mechanisms of miRNA 

biogenesis, involving the generation of pre-miRNA hairpins independent of Microprocessor. c, Ago2 

cleavage-dependent miRNAs. (Adapted from Shang et al., 2023) 
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canonical pathways help to make the miRNAome and its dynamic responsiveness to 

developmental and environmental signals. 

2.3 MicroRNA Target Recognition and Regulation 

2.3.1 Seed Region and Target Specificity 

The seed region, consisting of nucleotides 2-8 from the 5' end of the miRNA, is the main factor 

influencing miRNA target specificity (Bartel, 2018). Canonical seed matches are categorized into 

distinct types according to their complementarity patterns: 6mer (positions 2-7), 7mer-A1 

(positions 2-7 with an A at position 1), 7mer-m8 (positions 2-8), and 8mer (positions 2-8 with an 

A at position 1) (Agarwal et al., 2015; McGeary et al., 2019). Recent high-throughput studies show 

that 8mer sites display the most significant repression, followed by 7mer-m8, 7mer-A1, and 6mer 

sites (McGeary et al., 2019). Apart from seed pairing, several auxiliary elements influence 

targeting efficiency including local AU content, target site accessibility, and cooperative binding 

of several miRNAs (Grimson et al., 2007; McGeary et al., 2019). Recent structural analyses of 

AGO-miRNA-target ternary complexes have explained the mechanisms by which these 

components enable target detection and repression (Sheu-Gruttadauria et al., 2019). 

Experimental validation has shown that seed complement frequency (SCF) is crucial for miRNA 

specificity. Analysis of all possible hexamers revealed a nonuniform distribution across the 3' UTR 

transcriptome, with seed matches to highly expressed miRNAs showing evolutionary depletion, 

suggesting selective pressure to avoid targeting (Farh et al., 2005; Stark et al., 2005). Duplexes 

with low SCFs typically result in fewer off-targets effects compared to molecules with richer 3' 

UTR complements, which is relevant for the design of miRNA-based therapeutics (Anderson et 

al., 2008). 

2.3.2 Mechanisms of Gene Silencing 

MicroRNAs (miRNAs) promote gene silencing via two primary mechanisms: degradation of 

mRNA and repression of translation (Jonas & Izaurralde, 2015). The GW182 protein family 

functions as essential effectors, connecting AGO proteins to the cellular degradation machinery 

(Gebert & MacRae, 2019). GW182 proteins facilitate the recruitment of the CCR4-NOT 

deadenylase complex, resulting in the removal of the poly(A) tail, decapping, and subsequent 

mRNA degradation (Jonas & Izaurralde, 2015). 

Recent studies using ribosome profiling and proteomics have found that the main mechanism of 

miRNA-mediated repression in mammalian cells is mRNA instability, therefore explaining 66–

90% of protein downregulation (Eichhorn et al., 2014; Gebert & MacRae, 2019). For some targets 

and cellular settings, translational suppression is absolutely essential (Duchaine & Fabian, 2019) 
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2.3.3 Seed-Based Toxicity and Off-Target Effects 

A significant discovery indicates that specific 6mer seed sequences possess intrinsic toxicity to 

cells by targeting crucial survival genes (Gao et al., 2018; Putzbach et al., 2017). The mechanism 

known as DISE (Death Induced by Survival gene Elimination) become obvious when siRNAs or 

miRNAs possessing specific G-rich seed sequences simultaneously target multiple survival genes 

(Murmann et al., 2018; Putzbach et al., 2018).  

A systematic screening of all 4,096 possible 6mer seeds revealed that the most toxic seeds are G-

rich, especially those with G nucleotides at positions 1-2, which preferentially target survival genes 

containing C-rich 3'UTRs (Gao et al., 2018). Many tumor-suppressive miRNAs, such as miR-34a-

5p, contain toxic seed sequences, indicating a potential mechanism for inducing cancer cell death 

(Gao et al., 2018; Patel & Peter, 2018). In contrast, the majority of miRNAs have evolved to avoid 

these toxic sequences, suggesting a selective pressure reducing overall toxicity (Gao et al., 2018). 

This discovery has important implications for understanding miRNA evolution, function, and 

therapeutic applications. It also highlights the importance of considering off-target effects in 

RNAi-based therapeutics and the potential for designing super-toxic artificial miRNAs for cancer 

treatment (Murmann et al., 2018). 

 

2.4 MicroRNA Sequence Variants and Their Functional Impact 

2.4.1 Types of miRNA Variants 

MicroRNA sequence variants include naturally occurring polymorphisms as well as somatic 

mutations, which can significantly influence miRNA function through various mechanisms (Ryan 

et al., 2010; Tomasello et al., 2021). Variations in single nucleotide polymorphisms (SNPs) within 

miRNA genes are observed at different frequencies among populations, with specific positions 

exhibiting greater evolutionary constraint compared to others (Zorc et al., 2012). The variants 

include SNPs that represent germline variations capable of affecting miRNA processing, stability, 

or target recognition (Moszynska et al., 2017). 

IsomiRs, defined as length and sequence variants of canonical miRNAs that result from inaccurate 

processing or post-transcriptional modifications, represent a significant source of miRNA diversity 

(Tomasello et al., 2021). The functional consequences of miRNA variants are significantly 

influenced by their location within the mature miRNA sequence. Seed region variants (positions 

2-8) generally have the most significant effects on function by modifying the total number of target 

genes (Hill et al., 2014). Single nucleotide variations in the seed region may divert miRNA towards 

different target sets, creating a novel regulatory molecule (Mencía et al., 2009). Variants located 

at the 3' end can influence miRNA stability and its incorporation into RISC, whereas changes in 

the pri-miRNA or pre-miRNA sequences may interfere with processing by Drosha or Dicer 
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(Fernandez et al., 2017). In addition to basic substitutions, miRNA variants include insertions and 

deletions that may modify the seed sequence or change the overall length of the mature miRNA 

(Bhattacharya et al., 2014).  Recent deep sequencing studies have shown that isomiR expression 

is prevalent and regulated; different isomiRs could have diverse targets and functions (Tomasello 

et al., 2021; Guo & Chen, 2014). 

2.4.2 Functional Consequences of Variants 

The functional effect of the miRNA variants is significantly influenced by their location within the 

mature sequence (Tomasello et al., 2021). Target specificity (Bhattacharya & Cui, 2016) is 

substantially influenced by variants in the seed region between positions 2–8. Recent 

investigations have revealed that 5' isomiRs with altered seed sequences might display quite 

different target patterns than canonical miRNAs (Tan et al., 2014; Tomasello et al., 2021). On the 

other hand, variants at the 3' end influence miRNA stability and subcellular localization, whereas 

central variants can affect RISC loading and activity (Tomasello et al., 2021; Vickers et al., 2015). 

The careful analysis of miRNA variations has revealed that particular sites show more evolutionary 

constraint, implying their importance in function (Quang & Xie, 2016). This pattern of positional 

conservation provides insightful analysis for understanding miRNA evolution and future 

implications of variations. 

2.4.3 Disease-Associated miRNA Variants 

A number of studies have linked miRNA variations to human disorders, including cancer 

(Moszynska et al., 2017; Galka-Marciniak et al., 2019). Pathogenic variants can operate through a 

variety of pathways, including altered processing, whereby variants impacting pri- or pre-miRNA 

structure may lower mature miRNA levels (Ryan et al., 2010); seed disruption, which directly 

modifies targeting specificity (Hill et al., 2014); and the synthesis of new miRNAs, whereby 

mutations can generate de novo miRNA genes from previously non-functional sequences 

(Friedländer et al., 2014). 

Recent cancer genomics research has found recurring miRNAs across several cancer types that 

point to possible driver involvement (Galka-Marciniak et al., 2019; Hrovatin et al., 2018). Without 

functional validation, it is difficult to separate driver from passenger mutations. 

 

2.5 Computational Approaches for miRNA Analysis 

2.5.1 Traditional Machine Learning Approaches for Target Prediction 

Over the past 20 years, miRNAs' computational analysis has progressed significantly. Initial 

algorithms focused on target prediction using evolutionary conservation and seed complementarity 

(Lewis et al., 2005; Agarwal et al., 2015). These techniques did, however, show limited accuracy 

during experimental validation; false positive rates often exceeded 70% (Pinzón et al., 2017). 
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Modern target prediction systems combine several features outside seed pairing, including target 

site accessibility (Lorenz et al., 2011), local sequence context (Grimson et al., 2007), expression 

profiles (Liu & Wang, 2019), and cross-linking immunoprecipitation (CLIP) data (Karagkouni et 

al., 2020). They also use machine learning approaches. Recent benchmarking analyses show that 

ensemble approaches—which include several algorithms—outperform individual tools (Quillet et 

al., 2020; Riffo-Campos et al., 2016). 

The evolution toward machine learning approaches began with the recognition that multiple 

features beyond seed pairing influence targeting efficacy (Grimson et al., 2007). miRanda 

incorporated thermodynamic stability calculations using Vienna RNA package algorithms, while 

PicTar introduced the concept of combinatorial targeting by co-expressed miRNAs (John et al., 

2004; Krek et al., 2005). These developments laid the groundwork for more sophisticated machine 

learning implementations. 

Support vector machines (SVMs) emerged as a popular choice for miRNA target prediction, as 

demonstrated by tools like MiRTarget2 and TargetMiner (Wang & El Naqa, 2008; 

Bandyopadhyay & Mitra, 2009). These methods could integrate diverse features including 

sequence composition, structural accessibility, and conservation patterns into unified prediction 

models (Betel et al., 2010).  

2.5.2 Machine Learning for Variant Effect Prediction 

Analysis of miRNA with the help of machine learning has benefited significantly due to the 

increased accessibility of high-throughput experimental data (Quang & Xie, 2016; Wen et al., 

2019). Deep learning has been very promising, reflected in tools such as DeepMirTar that employs 

autoencoders to identify target site features, miRAW that employs convolutional neural networks 

to predict targets and DeepTarget that incorporates the various types of data to boost accuracy. 

Ensemble methods have been shown to be quite powerful, Random Forest models appearing to 

give good results across the board in terms of predicting the effect sizes/variants on the outcome, 

XGBoost based methods being more robust to unbalanced dataset, and hybrid approaches using 

multiple algorithms together performing the best overall. Recent studies have identified novel 

predictive features such as RNA secondary structure dynamics (Lorenz et al., 2011), sequence 

motifs beyond seed regions (Briskin et al., 2020), tissue-specific expression patterns (Ludwig et 

al., 2016), and evolutionary signatures (Friedman et al., 2009). The innovations in feature 

engineering have markedly enhanced prediction accuracy. 
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2.5.3 Predicting Variant Effects 

The prediction of miRNA variant effects presents unique difficulties in comparison to target 

prediction (Bhattacharya & Cui, 2016). Recent methodologies have focused on the creation of 

position-specific scoring matrices to reflect the varied significance of nucleotide positions (Quang 

& Xie, 2016), structural predictions that evaluate the impact of variants on RNA folding and 

processing (Lorenz et al., 2011), the integration of machine learning to amalgamate diverse 

features for holistic predictions (Salari et al., 2013), and cell-type specific models that consider 

context-dependent influences (Ludwig et al., 2016). 

Regardless of developments, predicting the effects of variants continues to be difficult due to the 

limitations of training data and the context-dependent characteristics of miRNA function (Quang 

& Xie, 2016). 

 

2.6 MicroRNAs in Cancer 

2.6.1 Oncogenic and Tumor-Suppressive miRNAs 

Depending on their targets and the cellular setting, microRNAs show two different roles in cancer: 

either tumor suppressors or oncogenes (oncomiRs). MicroRNAs exhibit dual roles in cancer, 

acting as either oncogenes (oncomiRs) or tumor suppressors, contingent upon their targets and the 

cellular context (Smolarz et al., 2022; Plotnikova et al., 2019). OncomiRs that are well-

characterized include miR-21, which targets several tumor suppressors such as PTEN and PDCD4 

(Bautista-Sánchez et al., 2020), miR-155, which facilitates proliferation and immune evasion 

(Bayraktar & Van Roosbroeck, 2018), and the miR-17~92 cluster, which promotes MYC-driven 

tumorigenesis (Fuziwara & Kimura, 2015). 

However, tumor-suppressive miRNAs include the let-7 family, which inhibits several oncogenes 

including RAS and MYC (Chirshev et al., 2019), the miR-34 family, direct targets of p53 that 

promote cell cycle arrest and death (Hermeking, 2010; Rokavec et al., 2014), and the miR-200 

family, known for its function in suppressing epithelial-mesenchymal transition (Title et al., 2018). 

2.6.2 Clinical Applications and Challenges 

As cancer cells can adapt through several pathways, the therapeutic targeting of miRNAs in cancer 

presents several challenges including the need of tissue-specific delivery and cellular adsorption, 

potential off-target effects associated with unintended targeting of toxic agents, stability concerns 

regarding the protection of RNA molecules from degradation, and the presence of resistance 

mechanisms (Rupaimoole & Slack, 2017; Gambari et al., 2019). 
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Recent studies show promise as miR-34a mimics (MRX34) were among the first candidates for 

clinical testing; but, the trial was stopped due to immune-related side events (Beg et al., 2017; 

Hong et al., 2020). Enhanced delivery systems and more focused approaches are underlined in 

current initiatives (Rupaimoole & Slack, 2017). 

 

2.7 Current Challenges and Research Gaps 

2.7.1 Limitations in Variant Analysis 

Despite progress in miRNA research, significant gaps remain in our understanding of sequence 

variants (Tomasello et al., 2021; Bhattacharya & Cui, 2016). Most variant studies concentrate on 

individual miRNAs, which restricts our knowledge of fundamental concepts. Variant effects 

showcase significant variability across different cell types and conditions, complicating the 

prediction of outcomes in novel contexts. The technical challenges of high-throughput screening 

for variant effects persist, resulting in numerous isomiRs and variants remaining uncharacterized 

in existing databases. 

2.7.2 Computational Challenges 

Current computational approaches encounter several limitations, including a shortage of training 

data with experimentally validated variant effects, challenges in identifying the most informative 

features for prediction, a lack of biological interpretability in deep learning models, and the issue 

of models trained on specific cell types not transferring effectively to other contexts (Quang & 

Xie, 2016; Wen et al., 2019). 

 

2.7.3 Need for Systematic Approaches 

Systematic approaches are necessary to fully understand the effects of miRNA variants 

(Tomasello et al., 2021). This involves the development of standardized experimental protocols 

for variant characterization, the integration of seed toxicity concepts with traditional target 

prediction, the creation of cell line-specific models that account for contextual effects, and the 

construction of machine learning frameworks capable of managing sparse, high-dimensional 

data. 

The challenges stated requirements for the advancement of novel computational and 

experimental methodologies to systematically characterize miRNA variants and predict their 

functional implications across various cellular contexts, which underpins the present study. 
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Chapter 3- Methodology 

3.1 Dataset Description 

The dataset used for the present study consists of a total of 5,574 unique miRNA sequences that 

were experimentally profiled to determine their effect on 13 different human cell lines. These are 

the lines of genetically modified and cancer-derived cells, which cover a wide variety of cellular 

contexts. In particular, the cell lines of the study are: Wild Type (WT), Triple Knockout (TKO), 

TUT2 Knockout (TUT2KO), TUT4 Knockout (TUT4 KO), HME1, G401, A549, HCT116, MCF7, 

SF268, H522, HOP92, and SKOV3. Each miRNA sequence was 22 nucleotides in length, 

representing the antisense strand designed to target specific mRNAs. 

 

Figure 2: Visual Representation of 3 Variants along with Canonical Sequence 

Each data point in the dataset necessarily describes either a canonical miRNA or a designed variant 

of a canonical miRNA. Summarily, the dataset was obtained from 800 unique canonical miRNAs, 
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and for each canonical miRNA, five forms of sequence variants were engineered to analyze the 

specific positional alteration effect. These were a result of the following systematic modification: 

• Point Substitution at Positions 14 and 15 (N1415): A pair of nucleotides at the 3′ end of 

the miRNA sequence was changed to examine the effect of such a change on gene 

regulatory potential. 

• Point Substitution at Positions 17 and 18 (N1819): Likewise, additional substitutions 

were brought downstream to look into positional effects towards the tail end. 

• Point Substitution at Positions 21 and 22 (N2122): This improvement focuses on the 

most severe part of the miRNA sequence, i.e., the extreme 3′ end. 

• 5′ End Shift – Deletion Variant (min1): This variant was synthesized by deleting one 

nucleotide from the 5′-end of the miRNA and adding an extra nucleotide at the 3′-end of 

the miRNA, to shift the sequence downstream by one base pair. 

• 5′ End Shift – Addition Variant (plus1): Conversely, this variant involves the insertion 

of a second nucleotide at the 5′ end, and deletion of one nucleotide from the 3′ end, hence 

moving the sequence upstream. 

 

3.2 Data Preprocessing and Normalization 

Python 3.8+ was the main language used in the data processing pipeline, which relied on the 

scientific computing ecosystem for solid and repeatable results. The main libraries applied were 

Pandas (version 1.3 or above) for dealing with data (McKinney, 2010); NumPy (version 1.21 or 

higher) for performing efficient calculations (Harris et al., 2020); SciPy (version 1.7 or more) for 

using statistical methods and hypotheses (Virtanen et al., 2020); Matplotlib (version 3.5 or above) 

for developing good-looking visualizations (Hunter, 2007); and Seaborn (version 0.11+) for 

making improved statistical graphs and analyzing distributions (Waskom, 2021).  

To handle the different analysis challenges for isomiR data and compare cell lines with variance 

in their expression levels and distributions, data were processed using two different methods. With 

these methods, the adaptability to various research topics and assumptions is still possible, as it 

can reveal many kinds of expression patterns. At the start of this analysis, we filtered out sequences 

denoted with symbol min1 and plus1 since they had only one changes in the whole sequence which 

eventually would not influence most of the sequence feature, such as features related to seed and 

post seed, left us with 3311 sequences in total. 

For every cell line, Z-score normalizing was performed independently to standardize expression 

value distribution. This transformation standardized every cell line dataset to a mean of zero and 

a standard deviation of one, therefore enabling fair comparison between many biological systems. 

The equation describes the change: 
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z = (x - μ) / σ 

where: 

 x = individual expression value 

 μ = cell line-specific mean expression 

 σ = cell line-specific standard deviation of expression 

This normalizing technique lowers variability caused by variations in experimental circumstances 

or natural expression scaling among cell types. 

Relative expression changes were assessed by converting data to the log2 fold change, which lets 

us observe changes with reference to a standard background. Since we set baseline_reference = 

100, the transformation was calculated with the log2FC = log2(expression_value / 

baseline_reference) to compute log2FC. Experiments showed that the baseline of 100 allowed 

significant fold change interpretations, so that a change of +1 meant a two-fold increase and a 

change of -1 meant a two-fold decrease. If analysis of gene expression reveals values that are not 

what was anticipated for a particular biological condition, this method can be very valuable. 

 

3.3 Principal Component Analysis 

Principal Component Analysis was performed in all three transformed datasets (raw, z-score 

normalized, and log2 fold change) to understand how the different cell lines relate and find the 

hidden factors affecting miRNA sequence variations. The goal of this analysis was to reduce 

dimensionality while preserving as much variance as possible. 

Considering the structure of the data, we transposed the matrix so that cell lines (n = 13) could be 

treated as an observation and miRNA sequences as a variable. This perspective allowed exploring 

the way cell lines group based on their overall expression signature and the specific miRNA 

sequence that generate the most variance between cell lines. 

We performed PCA using the PCA class from the sklearn.decomposition package in scikit-learn. 

StandardScaler from sklearn. We used preprocessing to adjust the data before reducing its 

dimensions for datasets, such as raw and log2FC data, that had not yet undergone normalization. 

The fit_transform() technique was used for the transformation; the components_ property 

extracted the loadings—that is, individual miRNA sequence to every primary component. Using 

Matplotlib and Seaborn, we generated scatter plots of the top two main components that allow 

visually assessing the clustering of cell lines across various data manipulations. For 

interpretability, the top 20 miRNA sequences contributing to each of the first two principal 

components were identified based on absolute loading values. We then investigated these 
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prominent characteristics to understand their likely biological relevance in elucidating the 

variations in expression among cell lines. 

 

3.4 Sequence Feature Extraction and Analysis 

3.4.1 Feature Categories and Extraction 

We created a thorough feature engineering workflow to examine the molecular factors affecting 

cell line function and expression patterns. This pipeline classified sequence-derived traits based 

on recognized biological processes including stability, processing, targeted specificity, and motif 

enrichment. 

Table1 summarizes the feature categories, including the number of features extracted, their 

biological relevance, and representative examples. 

Table 1: Sequence Feature Categories and Biological Significance 

Category Feature 

Count 

Biological Rationale Key Examples 

Basic Properties 4 Fundamental sequence 

characteristics affecting stability 

and processing 

overall GC content, 

median folding energy 

Nucleotide 

Composition 

8 Base composition effects on 

structure and function 

A/U/G/C counts and 

percentages 

Positional 

Features 

8 Terminal nucleotide effects on 

processing and stability 

First and last nucleotide 

identity (one-hot encoded) 

Seed Region 

Analysis 

16 Target recognition and binding 

specificity determinants 

Positions 2-8 composition, 

seed GC content 

K-mer Patterns 64 Higher-order sequence motifs and 

structural preferences 

Trinucleotide frequencies 

and patterns 

 

Basic features like GC content give a thermodynamic stability whereas nucleotide composition 

(numbers and percentages) give additional information about the diversity of sequences. The 

percentage-based feature enables length-independent comparisons whereas the count-based 

features preserve absolute molecular composition which is biologically relevant in modeling. 
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3.4.2 Positional and Terminal Features 

Terminal nucleotide similarity is essential for miRNA processing and silencing action especially 

at the first and last locations. The loading specificity of Argonaute proteins is influenced by the 5′ 

nucleotide, for example, uracil at the 5′ end is more frequently recognized by certain AGO family 

members. The 3′ nucleotide can influence subcellular localization and transcript stability (Kim et 

al., 2025). One-hot encoding helped to encode terminal positions in a machine-readable way. By 

converting every base identity into binary variables, this encoding lets machine learning models 

assess spatial impacts free from ordinal structure. 

3.4.3 Seed and Post-seed Region Characterization 

Since the bases at positions 2–8 pair with target mRNAs, the seed region is the main region in 

miRNAs that determines which mRNAs are targeted. The features were extracted to reflect 

nucleotide composition, the frequency of a base, and GC content in this particular region. The 

post-seed region (positions 9 to 22) was computed with a corresponding set of features to allow 

comparative analysis. The GC content in the seed area acts as an intermediary for hybridization 

strength, therefore affecting binding affinity and specificity. Comparative statistics between the 

seed and non-seed regions provide insight on functional difference and evolutionary boundaries 

between targeting domains. 

3.4.4 K-mer Frequency Analysis and Filtering 

The analysis of trinucleotide (3-mer) frequencies identified higher-order sequence patterns and 

motifs undetectable based on simple nucleotide composition analysis (Ghandi et al., 2014; Lee et 

al., 2015). A systematic examination of all possible trinucleotide combinations (4³ = 64 total) 

makes it possible to identify a preference of sequences and themes that can potentially influence 

miRNA processing, stability or activity. 

In order to identify more subtle sequence motifs beyond simple base composition, all 3-mers 

(trinucleotide compositions) were calculated with a sliding window along the length of the miRNA 

(window size = 3, stride = 1). These characteristics are of local characteristics which can affect the 

structure of miRNA or Dicer processing or interaction with the target. After generating all 3-mer 

features, we performed variance filtering to clean the data. This step helped eliminate features that 

were constant or nearly constant across all miRNAs (variance < 0.001) — since such features do 

not help the model learn anything meaningful. Removing them makes the model more efficient 

and prevents it from wasting effort on patterns that aren’t biologically relevant.  

3.4.5 Feature Integration and Dataset Construction 

The completed sequence-derived features were integrated with the corresponding expression 

values (raw, Z-score normalized, and log2 fold change) to create the comprehensive feature 

matrices to be used in downstream machine learning. This design allowed the relative modeling 
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of expression behavior among cell lines based on inherent sequence properties, appropriate to both 

predictive modeling and to the analysis of feature importance. 

 

3.5 Feature Preprocessing and Sparsity Analysis 

3.5.1 Pipeline Structure and Categorical Encoding 

A modular preprocessing pipeline was used to prepare the dataset to be used in machine learning 

modeling but still be interpretable in a biological context. The design provides miRNA regulation 

biological knowledge to guide data cleaning and transformation. The preprocessing logic was 

implemented in a custom class, miRNAPreprocessor75, which made it reproducible and allowed 

its configurable use on different feature sets. 

Categorical variables (indicating nucleotide identity at important positions: e.g. pos1_nt and 

last_pos_nt) were one-hot encoded to make them compatible with machine learning algorithms. 

This transformation retained biological meaning and transformed categorical input to binary 

features. 

Algorithm 3.2: One-Hot Encoding Implementation 

For each categorical feature f in {pos1_nt, last_pos_nt}: 

    For each unique value v in f: 

        Create binary feature f_v where: 

            f_v = 1 if f == v, else 0 

    Remove original categorical feature f 

Table 2: Categorical Feature Encoding Specifications 

Original 

Feature 

Encoded Features Biological Rationale Impact on 

Dataset 

pos1_nt pos1_nt_A, pos1_nt_U, 

pos1_nt_G, pos1_nt_C 

5' nucleotide effects on 

RISC loading and stability 

+4 features, -1 

categorical 

last_pos_nt last_pos_nt_A, last_pos_nt_U, 

last_pos_nt_G, last_pos_nt_C 

3' nucleotide effects on 

processing and 

degradation 

+4 features, -1 

categorical 
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3.5.2 Sparsity-Based Filtering with Biological Protection 

Sparsity Assessment 

We evaluated each numerical feature for sparsity, which was considered as the ratio of zero values 

to the total sample number. The threshold of 75% sparsity is due to conventional bioinformatics 

usage (Saeys et al., 2007; Hira & Gillies, 2015), and it can be considered as a balance between 

keeping features and removing noise. Features with a sparsity level above 75% were identified as 

features to be eliminated: 

 sparsity_rate(feature) = (count_zeros(feature) / total_samples) * 100. 

Features above the threshold might be removed, but this was done automatically by their biological 

relevance (sub-section 3.5.2.2 and Table 3.3) and thus ensured that none of the required functions 

were removed. 

Biological Feature Protection Mechanism 

After realizing that some features biologically necessary might be naturally sparse, a feature 

protection mechanism was introduced. In this system, features are given priority scores depending 

on their biological significance making sure that important features that are few in number are not 

lost after filtering. 

Table 3: Biological Feature Protection Hierarchy 

Priority 

Level 

Feature 

Category 

Protection Rationale Score 

Range 

Examples 

1 

(Highest) 

Core 

properties 

Fundamental miRNA 

characteristics essential for 

all analyses 

85-95 GC_content, 

seq_length, 

median_energy 

2 Position 

features 

Terminal nucleotide effects 

critical for processing and 

function 

76-82 pos1_nt_, last_pos_nt_ 

3 Seed region Target binding specificity 

determinants with 

established functional 

importance 

55-75 seed_GC_content, 

seed_*_percent 
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4 Composition Overall sequence properties 

providing baseline molecular 

characteristics 

45-50 A_percent, U_percent, 

G_percent, C_percent 

5 

(Lowest) 

K-mer 

frequencies 

Higher-order sequence 

patterns potentially relevant 

for specific contexts 

20 AAA_freq, UUG_freq, 

etc. 

 

This hierarchy was made by reviewing many literatures on miRNA biogenesis and regulation such 

as the recent review paper of Kim et al., 2025, which provide a complete overview on miRNA 

biogenesis, and Neph et al. highlighted the functional significance of certain motifs in their paper 

in 2012. This scoring system served to retain features of known biological importance despite 

statistical sparsity. 

3.5.3 Variance-Based Filtering and Standardization 

After sparsity filtering, variance cutoff of 0.001 was applied to remove ultra-low variance features 

which offer little discriminatory power. This step targeted the features with non-sparse 

distributions but limited variability across the samples, therefore, increasing model efficiency and 

interpretability. All the retained features were then standardized using z-score normalization. 

scikit-learn StandardScaler was used to compute feature-wise means and standard deviations 

using only training data. The training, validation, and test sets were subjected to these settings 

equally to eliminate data leakage and guarantee the model generalizability. 

 

3.6 Correlation-Based Feature Selection 

3.6.1 Correlation Analysis with Expression Targets 

Pearson correlation was performed to determine the relationship between sequence features and 

the expression of multiple cell lines. It was decided to use this method because it is very clear, 

statistically rigorous, and widely acceptable in the processing of biological data although it is 

limited to linear connections (Hall, 1999; Guyon & Elisseeff, 2003). 

The sequences were assessed regarding each characteristic correlating with the expression values 

across the 13 cell lines using Pearson product-moment correlation coefficient. Two-sided t-tests 

were used to test singularity at the alpha level of 0.01 with null hypothesis 𝐻0: ρ=0 and alternative 

hypothesis 𝐻1: ρ0. With 52 traits and 13 targets (676 tests). We used uncorrected α = 0.01 to 

remain sensitive to physiologically meaningful, but moderate associations, but interpreted results 

cautiously. 
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3.6.2 Multicollinearity Detection and Biologically Informed Resolution 

Multicollinearity was evaluated to ensure model stability and interpretability by identifying feature 

pairs with a correlation coefficient of |r| ≥ 0.8 (Dormann et al., 2013). Features showing notable 

mutual correlation might cause redundancy, reduce generalizability, and maybe alter estimates of 

feature importance in predictive models. 

Multicollinearity was solved through a hierarchy-based resolution system, which guaranteed a 

balance between statistical relevance and biological relevance. 

 

Biological Priority: Features were ranked according to the biological importance scoring system 

outlined in Section 3.5, Table 3.3. This ensured the retention of essential features related to miRNA 

stability, targeting, and processing, despite potential statistical redundancy. 

 

Predictive Breadth: Features showing stronger connections to expression targets were given 

higher priority within linked pairs. 

 

Interpretability Preference: Features with greater interpretability from biological or 

computational angles were given higher priority in cases of tie breaking. 

 

This biologically driven multicollinearity resolution reduced feature redundancy and kept 

domain-specific information, which allowed the development of efficient and interpretable 

machine learning models. 

 

3.7 Feature Selection Methods Comparison 

We performed comparison analysis with four popular techniques to investigate efficiency and 

practical significance of correlation-based feature selection method. Their respective performances 

needed to be benchmarked in terms of the number of characteristics selected, run time, and ease 

of biological interpretation. All the techniques were applied to the identical pre-processed dataset 

in controlled experimental conditions to ensure their fair comparison. The variability was 

minimized through this strategy via data management thus providing focused research on the 

choice behaviour and efficiency of each technique. 

Feature Selection Methods Evaluated: 

• Mutual Information Regression: Captures non-linear dependencies between features and 

targets based on information-theoretic measures (Kraskov et al., 2004). It offers a 

complementary perspective to linear correlation by identifying complex, non-linear 

relationships. 
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• LASSO Regularization: It selects a sparse set of predictive features through L1-penalised 

linear regression cross-validated. Feature selection and integrated model fitting is attained 

by retaining features whose coefficient is non-zero (Tibshirani, 1996). 

 

• Principal Component Analysis: Though not a strict feature selector, PCA lowers 

dimensionality by converting features into uncorrelated components. We kept the 

minimum essential components to account for 95% of the dataset variance. 

 

• Univariate F-test Selection: Ranks features based on their statistic correlation with target 

variables through individual F-tests. It is a fast baseline comparison standard filter method 

(Guyon & Elisseeff, 2003). 

To assess practical performance, we recorded the number of selected features and total runtime for 

each method. These results are presented in Table 3.4. 

Table 4: Computational Performance Comparison 

Method Features Selected Runtime (s) 

Correlation-Based 21 0.040 

Mutual Information 30 1.257 

LASSO Regularization 22 0.363 

Univariate F-test 30 0.032 

PCA (95% variance) 8 components 0.241 

The univariate F -test was the fastest of all but does not control multicollinearity or provide 

interpretability beyond statistical association. Mutual Information and LASSO induced a moderate 

computational burden, but provided other modeling perspective, non-linear and embedded, 

respectively. PCA produced the smallest representation but rotated original features to 

components, which are not easy to interpret biologically. 

The correlation-based approach offered a good compromise between computing performance and 

biology. It picked a smaller but understandable feature set (21 features) and accidentally retained 

competitive runtime performance, trailing only the F-test method. It also featured a domain-aware 

multicollinearity resolution mechanism unlike other approaches which makes it an attractive 

feature selection method on biologically complex systems like the modeling of miRNA 

expression.  
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3.8 Machine Learning Model Development 

3.8.1 Random Forest Implementation Strategy 

Random Forest was selected as the primary machine learning algorithm based on its demonstrated 

advantages for biological data analysis and specific suitability for cell line expression prediction 

tasks (Qi, 2012). The algorithm's ensemble nature provides robustness against overfitting, which 

is particularly important when working with high-dimensional biological data where the number 

of features may approach or exceed the number of samples. 

Table 5:Random Forest Advantages for IsomiR Analysis 

Advantage Biological 

Application 

Technical Benefit Implementation Impact 

Overfitting 

Resistance 

Robust performance 

with noisy expression 

data 

Stable predictions 

with limited sample 

sizes 

Reliable model 

performance across cell 

lines 

Non-linear 

Relationships 

Captures complex 

sequence-expression 

interactions 

No assumptions 

about linear 

relationships 

Enhanced predictive 

accuracy for biological 

patterns 

Feature 

Importance 

Identifies key 

biological drivers 

Interpretable results 

for biological insight 

Direct biological 

interpretation of sequence 

determinants 

Missing Value 

Handling 

Robust to incomplete 

biological 

measurements 

Minimal 

preprocessing 

requirements 

Simplified data 

preparation pipeline 

Computational 

Efficiency 

Parallel processing 

capabilities 

Scalable to larger 

datasets 

Feasible training across 

multiple cell lines 

The model was configured with the following hyperparameters: n_estimators=200, 

max_depth=15, min_samples_split=5, min_samples_leaf=2, max_features='sqrt', bootstrap=True, 

oob_score=True, random_state=42, and n_jobs=-1. 

  

3.8.2 Multi-Variant Model Implementation Framework 

Multiple model versions were methodically used and compared in order to fully assess Random 

Forest performance and find ideal settings for cell line expression prediction. While keeping 
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constant evaluation procedures, this multi-variant technique allows examination of many 

optimization strategies and feature selection combinations. 

Standard Random Forest: Baseline implementation using the correlation-selected feature set 

with empirically optimized hyperparameters derived from preliminary experimentation and 

biological data analysis best practices. 

Hyperparameter-Tuned Models: Systematic optimization through grid search cross-validation 

across multiple parameter dimensions including tree count, depth limits, sampling requirements, 

and feature selection strategies. Such optimization procedure determines the set of parameters 

providing the best predictive results according to the specific characteristics of cell line expression 

data. 

Parameter Grid Specification: 

• n_estimators: [100, 200, 300] balancing prediction stability with computational cost 

• max_depth: [10, 15, 20, None] exploring complexity vs. overfitting trade-offs 

• min_samples_split: [2, 5, 10] investigating split robustness requirements 

• min_samples_leaf: [1, 2, 4] assessing leaf node size impact on generalization 

• max_features: ['sqrt', 'log2', 0.5] evaluating feature selection strategies 

Additional Feature Selection Variants: The integration of secondary feature selection strategies 

(LASSO regularization and Recursive Feature Elimination) applied to the correlation-selected 

feature set to evaluate the influence of additional dimensionality reduction on model performance 

(Guyon et al., 2002). 

3.8.3 Training and Validation Framework 

A validation system was established to ensure a proper performance evaluation and the model 

generalizability in diverse biological settings. The validation procedure was designed to address 

the specific challenges related to the biological data analysis, including the possible batch effects, 

the sample size restrictions, and the need of the consistent performance across the different 

contexts of the cell lines. 

5-Fold Stratified Cross-Validation: 5-fold cross-validation with stratified sampling is used as 

the main validation method to ensure that the training and validation folds have a balanced 

representation of the expression range. The approach provides powerful performance estimates 

and makes the best use of the available data to train a model. 
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Train-Test Split Protocol: The final model evaluation was done with a separate 80-20 train-test 

split, such that the test set was used only to report performance, and to avoid data leakage or 

optimization bias. 

Performance Metrics Comprehensive Assessment: Multiple complementing measures were 

computed to provide an all-around assessment of model performance. 

• R² Score: Primary metric indicating proportion of variance explained by sequence features 

• Root Mean Square Error (RMSE): Absolute prediction error assessment in original 

expression units 

• Mean Absolute Error (MAE): Robust error metric less sensitive to outliers than RMSE 

 

3.9 XGBoost Implementation and Comparative Analysis 

XGBoost (eXtreme Gradient Boosting) (Chen & Guestrin, 2016) was applied as an additional 

machine learning model to compare with Random Forest. XGBoost was chosen due to its good 

results on genomics tasks, and its advantages are regularization, gradient-based optimization, and 

the ability to deal with complex features interactions (Li et al., 2019). Its incorporation allows 

more thoroughly analyzing the predictive approaches of modeling cell line expression. 

Table 6: XGBoost Advantages for Genomic Applications 

Advantage Biological Relevance Technical 

Implementation 

Expected Benefit 

Sequential Error 

Correction 

Learns from prediction 

mistakes to improve 

complex pattern 

recognition 

Gradient boosting 

with residual learning 

Enhanced accuracy 

on difficult-to-predict 

sequences 

Built-in 

Regularization 

Prevents overfitting in 

high-dimensional 

biological data 

L1 and L2 penalty 

integration 

Improved 

generalization with 

limited samples 

Advanced Feature 

Interactions 

Models complex 

sequence-expression 

relationships 

Tree-based 

interaction detection 

Captures non-additive 

sequence effects 

Efficient Missing 

Value Handling 

Robust performance with 

incomplete biological 

measurements 

Native missing value 

processing 

Simplified data 

preprocessing 

requirements 
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Early Stopping 

Mechanisms 

Automatically determines 

optimal model complexity 

Validation-based 

training termination 

Prevents overfitting 

while maximizing 

performance 

The base XGBoost model was configured with n_estimators=300, max_depth=6, 

learning_rate=0.1, subsample=0.8, colsample_bytree=0.8, reg_alpha=0.1, reg_lambda=1.0, 

random_state=42, n_jobs=-1. 

3.9.1 Optimization Strategy 

Randomized search cross-validation was used as hyperparameter optimization. It is a strategy that 

draws samples of defined parameter distributions; it is more effective than the exhaustive grid 

search in high-dimensional spaces. 

Parameter Distribution Specifications: 

• n_estimators: [200, 300, 500] investigating boosting round requirements 

• max_depth: [4, 6, 8] exploring tree complexity vs. overfitting balance 

• learning_rate: [0.05, 0.1, 0.15] assessing convergence speed vs. stability 

• subsample: [0.8, 0.9] evaluating bootstrap sampling impact 

• colsample_bytree: [0.8, 0.9] testing feature subsampling strategies 

• reg_alpha: [0, 0.1, 0.5] examining L1 regularization effects 

• reg_lambda: [1, 1.5, 2] investigating L2 regularization strength 

A total of 50 random parameter combinations were evaluated using 3-fold cross-validation with 

R² as the scoring metric, balancing model accuracy and computational feasibility across 13 cell 

lines. 

3.9.2 Performance Metrics and Evaluation Framework 

Comprehensive Performance Assessment: Multiple complementary metrics were calculated for 

both algorithms to provide complete characterization of their predictive capabilities: 

• R² Score: Primary metric for assessing explained variance and biological relevance 

• RMSE: Absolute prediction error in original expression units 

• MAE: Robust error metric providing additional perspective on prediction accuracy 

• Feature Importance Rankings: Comparative analysis of which sequence features 

each algorithm identifies as most predictive 

. 
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3.10 Model Performance Evaluation and Statistical Analysis 

The post-modeling evaluation was done thoroughly to verify the predictive quality, generalization 

capacity, and statistical stability of all settings of machine learning which were applied. This was 

an important step towards interpreting model behaviour under transformations, algorithms and 

feature selection methods and gaining insight into the relative importance of model tuning and data 

normalization. 

3.10.1 Data Aggregation and Metric Computation 

A Python class (ModelPerformanceVisualizer) was developed specifically to read and process the 

output of 18 different model fits, including all combinations of two algorithms (Random Forest 

and XGBoost), three expression data transformations (Raw, Z-score, and log 2-fold change) and 

three model types (Basic, Tuned, LASSO-based feature subsets). Every setting generated a CSV 

file with performance statistics (R 2, RMSE, MAE) in 13 cell lines. The results were compiled 

into a single DataFrame to perform meta-analysis. Cross-cell line consistency and predictive 

robustness were assessed by calculating summary statistics such as mean, minimum, maximum, 

and standard deviation of R2. 

3.10.2 Visualization Framework and Interpretability Analysis 

All figures were created using matplotlib and seaborn with modified aesthetic parameters (e.g., 

Times New Roman font, monochromatic color schemes, black-edged plots) suited for scientific 

presentation and publication, therefore guaranteeing academic-grade visual consistency. Important 

visual outputs were: 

• Overall Model Ranking: Horizontal bar plot ranked average R² across all configurations 

• Transformation Effects: Grouped bar plots showing how data normalization (Raw, Z-

score, log₂FC) impacted model accuracy across algorithms and model types. 

• Raw vs. Z-score Correlation: Scatter plot comparing R² scores from Raw vs. Z-score 

transformations, annotated by model, with a perfect-correlation reference line and mean 

absolute difference reported. 

• Hyperparameter Tuning Impact: Bar plots comparing baseline vs. tuned models, 

including percentage improvement labels for each configuration. 

• Model Type Distribution: Boxplots visualizing R² score distributions across Basic, 

Tuned, and LASSO-based model variants. 

• XGBoost Preprocessing Independence: Visual confirmation that XGBoost performance 

remained invariant across preprocessing strategies for each model type, verified by 

constant R² scores across input transformations. 
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3.10.3 Tools and Reproducibility 

All scripts were developed in Python 3.8+ using pandas, numpy, matplotlib, and seaborn. The 

analysis pipeline was modularized and reproducible, with standardized directory input and 

academic figure export functionality. 

 

3.11 Advanced Model Evaluation and Statistical Comparison 

In this section of analysis, we designed a advance statistical model of post-hoc performance 

evaluation to gain better insight about the comparative model behaviour. This framework 

constituted strict statistical tests, visual diagnostics, and model ranking analyses with 18 machine 

learning models. 

3.11.1 Aggregation of Performance Data and Metric Consolidation 

The results of all models were gathered based on 18 different configurations that consisted of 

combinations of two algorithms (Random Forest, XGBoost), three types of data transformation 

(Raw, Z-score, Log 2 FC), and three types of models (Basic, Tuned, LASSO-based). All of the 

configurations were tested on 13 cancer cell lines, which provided the performance matrices of R2, 

RMSE, and MAE. 

For each model, we computed: 

• Mean R², RMSE, and MAE 

• Standard deviation (SD) and standard error of the mean (SEM) 

• Raw R² and RMSE values for every cell line 

A custom Python class, FixedAdvancedModelAnalyzer, was used to organize this data, which 

made the results reproducible and consistent between comparative assessments. 

3.11.2 Visualization of Predictive Power with SEM 

Mean R2 scores were plotted with standard error bars at each of the configurations to illustrate 

central tendency and uncertainty in performance. A horizontal bar plot was used with coloring by 

algorithm and ranking in the descending order of mean R2. 

As recommended by Cumming et al. (2007), Standard Error of the Mean (SEM) was used to 

represent variability across replicates (cell lines), providing a biologically grounded view of model 

stability and generalizability. 
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3.11.3 Statistical Significance Testing via Friedman-Nemenyi Analysis 

Although average R2 scores are easy to interpret as an indication of model performance, they 

cannot alone tell whether differences between models are statistically significant. Accordingly, a 

non-parametric statistical system was adopted to formally evaluate variations in performance 

among model settings. This was necessary because the sample size was small (13 cell lines) and 

normality assumptions could be violated as is common with biological data. 

Friedman Test for Repeated Measures 

As the main inferential statistic, the Friedman test (non-parametric alternative to repeated-

measures ANOVA) was utilized (Friedman, 1940). It checks the statistical hypothesis that all 

model settings work equally well on many datasets (here: cell lines), based only on the ranking of 

the model performances on each dataset. The test was quite appropriate in our evaluation design, 

in which each of the models was fitted to the 13 cell lines and resulted in paired observations under 

different conditions. 

• For each of the N=13 cell lines, the 18 models were ranked based on their R² scores. 

• Lower ranks corresponded to better performance (i.e., rank 1 for the highest R²). 

• The test statistic: 

 
where n is the number of datasets (cell lines), k is the number of models, and Rˉj  is the 

average rank of model j. 

• The Friedman test indicated statistically significant differences among models (p < 0.05), 

justifying further pairwise comparisons. 

Nemenyi Post-Hoc Test and Critical Difference 

A Nemenyi post-hoc test (Demšar, 2006) was conducted to determine which pairs of models had 

significant differences. In this test the average ranks of each pair of models are compared with a 

value of Critical Difference (CD): 

 

  qα is the critical value from the Studentized range statistic at α = 0.05 

  k is the number of models (18) 

  n is the number of datasets (13) 



29 | P a g e  
 

Model pairs with average rank differences that exceeds the CD threshold are considered 

significantly different at the given alpha level. 

Critical Difference Diagram Visualization 

 

To get an intuitive feel of the result of the Nemenyi test, a Critical Difference Diagram was 

created: 

 

• The models are ranked on a horizontal axis based on average rank (low = good). 

 

• The horizontal lines between models imply that the difference between them is not found 

to be significant. 

 

• The Nemenyi test indicates significant difference between disconnected models (i.e. 

those that are not connected with a bar). 

 

It is a high-level summary of performance groups of models, showing both the best-performing 

set of configurations as well as those that are statistically indistinguishable. It assists in 

preventing an over-interpretation of differences in marginal R2, and it allows more evidence-

based Choice of modelling strategies. 

3.11.4 Implementation and Reproducibility 

Python 3.8+ libraries including pandas, numpy, scipy.stats, and matplotlib were used across all 

statistical techniques. Visualizations used seaborn with scientific themes (Times New Roman font, 

black-edged bars, annotated legends). 

3.12 Implementation Details and Computational Considerations 

All analyses were performed in a version-controlled and well-defined software environment to 

enable reproducibility, computational efficiency and independence of the analysis platform. The 

entire analytical pipeline was written in Python and ordered a collection of scientific computing 

and machine learning libraries that are seeing extensive use in computational biology and 

bioinformatics. 

Table 7: Complete Software Environment Specification 

Component Version Requirement Primary Functions 

Python 3.8+ Core programming language and ecosystem coordination 

pandas 1.3+ Data manipulation, preprocessing, and analysis 
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NumPy 1.21+ Numerical computing foundation and array operations 

scikit-learn 1.0+ Machine learning algorithms and evaluation frameworks 

XGBoost 1.5+ Gradient boosting implementation with GPU support 

SciPy 1.7+ Statistical functions and hypothesis testing 

matplotlib 3.5+ Publication-quality visualization generation 

seaborn 0.11+ Advanced statistical graphics and distribution analysis 
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Chapter 4: Results 

4.1 Data Preprocessing, Feature Engineering, and Exploratory Analysis 

The section reflects the findings of a thorough data preparation procedure, which began with an 

examination of the pattern of expressions through varying normalization techniques, proceeded to 

employ principal component analysis to visualize the relationship between cell lines, and lastly 

resulted in thoughtful feature engineering and selection. This reduced the original set of 3,311 

miRNA sequences (123 features) through an analysis process to a more machine-learning-suitable 

set of 31 important sequence factors. Beginning with 3,311 miRNA sequences with 123 features, 

the analysis was reduced to 31 significant sequence factors more appropriate to use in machine 

learning. 

4.1.1 Expression Data Distribution Analysis 

Figure shows how preprocessing affects the way 'WT' data is spread out among different cancer 

cell lines, which is an important step for using machine learning to predict how miRNA variants 

work. The leftmost panel, 'Raw Data Distribution', shows that the data varies a lot between 

different cell lines, with different shapes, means, and deviations, including some that have two 

HCT116). This raw variability requires preprocessing to prevent biased model learning. The 

central panel, 'Z-Score Normalized Distribution', demonstrates how Z-score normalization 

effectively centers all distributions around zero and reduces variance, standardizing feature scales. 

This process is vital for distance-sensitive algorithms, ensuring that feature magnitudes do not 

disproportionately influence models. The rightmost panel, 'Log2 Fold Change Distribution', shows 

that Log2 fold-change transformation further compacts and symmetrizes distributions, 

emphasizing relative changes in expression. This transformation is particularly beneficial in 

biological contexts because it highlights biologically significant variations and is well-suited for 

the machine learning tasks in this thesis. 

Figure 3: Density Distribution of Three Datasets 
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4.1.2 Principal Component Analysis 

The figure below provides a comparison of Principal Component Analysis (PCA) of the data in 

three different preprocessing modes, namely raw, Z-score normalized, and Log2 fold-change 

(Log2FC) transformed. In the PCA of the raw data, the samples are dispersed across the two 

principal components (PC1 and PC2) with much variation and without any obvious clustering of 

the various cell lines. Following Z-score normalization, data points are likelier concentrated 

around the center, and the magnitude of the principal components is lesser, which indicates that 

variances of features have been made equal. Nevertheless, clear segregation or close grouping of 

certain cell lines is not very obvious. Conversely, the PCA performed on the Log2FC transformed 

data clearly exhibits a clustering of some of the cell lines more so those that have similar biological 

characteristics and also identifies a few outliers that have distinct expression profiles. This  

 

observation supports the idea that the Log2FC transformation is useful to magnify relative 

variations in feature expression and optimize the visualization of the underlying biological 

relationships and differences between the samples, which is essential to discern meaningful 

patterns in high-dimensional biological data. These differences observed help to prove the 

significant impact of data preprocessing on the interpretability of dimensionality reduction method 

to highlight the heterogeneity and sample relationships in a complex biological dataset. 

4.1.3 Feature Engineering and Selection  

This flowchart below represents a step wise method to enhance quality of miRNA expression data 

to predict multiple targets with 13 cell lines, to decrease features and raise accuracy. The 

preprocessing step starts with 3,311 miRNA sequences characterized by 105 features. It includes 

transforming nucleotide positions into 8 dummy variables, dropping 31 mostly empty features, 

retaining 5 valuable categorical features, and dropping 28 features with extremely minimal 

variation, and standardizing the data, producing a grand total of 52 features. The second step in the 

procedure eliminates redundancy among the positional features (3 features), ensures that all 49 

features are statistically significant (with p < 0.01 in at least one target) and it also minimizes 

Figure 4: PCA Component Analysis of Three Datasets 
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multicollinearity by dropping 18 features among 30 pairs that are strongly correlated (|r| >= 0.8) 

based on their biological significance. It shrinks the feature space by 70.5 per cent, (105 to 31 

features) and preserves substantial predictors in five categories: core features (4), nucleotide 

composition (8), seed region characteristics (16), position encodings (11) and triplet frequencies 

(13). Such an approach is statistically significant, decreases computational burden, and minimizes 

the chances of overfitting in subsequent Random Forest and XGBoost models. 

 

Figure 5: Flowchart of the Feature Engineering Framework 
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4.2 Models Selection and Comparative Performance Analysis 

All eighteen model setups were trained and tested using the same dataset of miRNA variant effects 

in cancer cell lines, but the data was presented in three different ways: raw expression values, z-

score normalized values, and log2 fold change (Log2FC) transformed values. This setup allows 

for a precise comparison of the impacts of different preprocessing techniques on model 

performance, while controlling for variations in data content. 

4.2.1 Overview of Model Performance Rankings 

Using three main criteria—R², RMSE, and MAE—eighteen model configurations were assessed. 

The Random Forest model that was trained on Log2FC-transformed data and adjusted 

(RF_Log2FC_Tuned) always performed better than all the other models, as shown in Figure 4.1 

and confirmed by the critical difference diagram (Figure 4.8). The model achieved the best 

predicted accuracy with R² = 0.4614 ± 0.0228, RMSE = 0.4320, and MAE = 0.3208. 

 

 

Figure 6:  Model Performance Ranking Across 18 Configurations. The horizontal bar chart displays the R-

scores of all Random Forest (RF) and XGBoost (XGB) models under various preprocessing methods and 

tuning conditions. 
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Although Random Forest models using z-score normalization (RF_Zscore_Tuned: R² = 0.4432 ± 

0.0294) and raw data (RF_Raw_Tuned: R² = 0.4421 ± 0.0245) shown identical ability to describe 

the data, however, they had larger error which might be observed due to scaling. The XGBoost 

model using Log2FC-transformed data (XGB_Log2FC_Tuned) had R² of 0.4054 ± 0.00307, but 

it showed considerably higher RMSE (19.6392) and MAE (15.1949), which suggests that why it 

was less reliable in case of making overall predictions. 

LASSO-regularized models had the lowest R² scores and the least variation in performance (for 

example, XGB_Log2FC_LASSO: R² = 0.3222 ± 0.0305), suggesting they may have missed 

important information because they were too strict in choosing which features to include. 

4.2.2 Similarity of Raw Data and Z-score Normalization  

Particularly for Random Forest models, figure 4.2 indicates that the performance of raw data and 

z-score adjusted data is identical across all measures. With an average difference of just 0.50% 

between the raw and z-score R² values, the scatter plot indicates most models to be close to the 

ideal correlation line. Still, the error metrics offer a more thorough grasp of the useful benefits of 

normalizing. 

Figure 7: Raw vs. Z-score Normalization Performance Similarity. Scatter plot comparing R² scores 

between raw and z-score preprocessing for each model configuration, showing a mean absolute 

difference of only 0.50%. 
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While R² changes remained small across all variants (RF_Basic: 0.3809 vs 0.3818; RF_Tuned: 

0.4421 vs 0.4432; RF_LASSO: 0.3507 vs 0.3595), the error metrics exhibited notable variations 

in scale among the Random Forest models. Unlike the models that used z-score normalization, 

which had RMSE values between 0.740 and 0.795 and MAE values from 0.577 to 0.621, the 

models using raw data had much higher error levels, with RMSE between 19.0 and 20.5 and MAE 

between 14.8 and 16.1. This variation suggests, over all Random Forest versions, a 25-fold scale 

change (figure 4.3). The results indicate that even though the predictive performance remains 

similar (with R² differences less than 1%), using z-score normalization makes it much easier to 

understand the error measurements. 

 

This similarity suggests that z-score normalization mainly makes the scales of the features uniform 

while keeping the basic relationships that Random Forest algorithms rely on intact. Keeping the 

significant patterns discovered by correlation-based feature selection helps both approaches 

predict results similarly even if they explain findings differently. 

Figure 8: Raw vs. Z-score Preprocessing Effects on Random Forest Models. Comparison of R², RMSE, and MAE 

across preprocessing methods, showing negligible R² differences but large RMSE and MAE scale reductions with 

z-score normalization. 
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4.2.3 Effectiveness of Hyperparameter Tuning 

The noticeable differences seen in the bars for each model-dataset combination in Figure 4.4 show 

that hyperparameter tuning had different effects on each one, as it was used for all combinations. 

By adjusting the settings for all measures, Random Forest models showed clear improvements, 

leading to R² increases of 14.6–16.1% and significant drops in both RMSE and MAEs. 

RF_Log2FC, for example, rose from R2 = 0.4026 (RMSE = 0.4558, MAE = 0.3438) to R2 = 

0.4614 (RMSE = 0.4320, MAE = 0.3208), therefore suggesting an increase in explained variance 

and prediction accuracy. 

 

With adjustments across all preprocessing techniques, XGBoost models showed a consistent 

improvement of 8.1% in R2, paired with improvements in error measures. Together with consistent 

performance across preprocessing techniques, the steady improvement noted emphasizes 

XGBoost's preprocessing independence. On the other hand, it shows that Random Forest methods 

receive more benefits from systematic optimization in biological prediction applications and show 

increased sensitivity to hyperparameters. 

The observed improvement trends across preprocessing techniques imply that the impacts of 

hyperparameter tweaking are mostly independent of data transformation methods, therefore 

permitting the construction of optimization algorithms without the necessity of substantial 

calibration, which is particular to preprocessing. 

Figure 9: Hyperparameter Tuning Effectiveness. Bar chart showing percentage improvements in R² scores after 

tuning for each model and dataset (no error bars). 
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4.2.4 Model Type Performance, Reliability, and Statistical Significance 

Figure 4.5 offers an in-depth look at model performance distributions using R² as the principal 

metric. Tuned models did much better than the others, with a median R² of about 0.424 and the 

smallest range of results, showing they are reliable and good at making predictions. Random Forest 

variants within this group also exhibited the lowest RMSE and MAE values across their respective 

preprocessing formats, reinforcing their overall superiority. 

 

In comparison, basic models performed moderately well (median R² ≈ 0.378), while LASSO-

regularized models did the worst, showing the lowest median R² (≈ 0.332) and little variation. The 

error metrics (RMSE and MAE) support this trend, indicating that using correlation-based feature 

selection kept important features, while strong LASSO filtering caused a loss of valuable 

information. 

Statistical significance and reliability of these findings were confirmed through the Nemenyi test 

(Figure 4.6). RF_Log2FC_Tuned had the highest average rank (1.77), closely followed by 

RF_Raw_Tuned and RF_Zscore_Tuned (both 2.31), yet these differences were not statistically 

significant at α = 0.05. This result indicates comparable predictive performance among the top 

three Random Forest configurations. 

All tuned XGBoost variants clustered together with identical ranks (6.69), highlighting their 

insensitivity to preprocessing. Conversely, LASSO configurations, particularly XGBoost LASSO, 

ranked lowest (16.15), affirming the negative impact of excessive feature elimination. 

Figure 10:  Performance Distribution by Model Type. Boxplot summarizing the R² 

performance distribution for Basic, Tuned, and LASSO model variants. 
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Figure 4.7 provides additional information about model reliability using standard error bars. 

RF_Log2FC_Tuned not only achieved the highest mean R² (0.4614) but also showed the lowest 

SEM (±0.0228), affirming both its accuracy and consistency. RF_Zscore_Tuned and 

RF_Raw_Tuned also maintained strong reliability (SEM ±0.0294 and ±0.0285, respectively). In 

contrast, XGBoost models displayed consistent SEM values (±0.0307), but with slightly greater 

variability. LASSO models—especially RF_LASSO—showed the highest SEM, reflecting 

unstable generalization across biological conditions. 

Moreover, while R² values remained relatively stable across preprocessing approaches, RMSE and 

MAE varied drastically due to data scale effects. Models based on raw data had the biggest errors 

(for example, RF_Basic: RMSE = 20.0561, MAE = 15.7526), but using z-score normalization 

made the results much easier to understand without losing accuracy (for example, RF_Basic: 

RMSE = 0.7815, MAE = 0.6153). 

Ultimately, Log2FC-transformed data produced the most precise and biologically relevant 

predictions, especially for Random Forest models. RF_Log2FC_Tuned had the best performance, 

Figure 11: Critical Difference Diagram (Nemenyi Test). Ranking of all model configurations by average 

performance, with statistically insignificant differences marked by horizontal connections. 
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with the lowest RMSE (0.4320) and MAE (0.3208), and a strong R² (0.4614), making it the best 

choice for predicting how miRNA variants affect cancer cell lines. 

 

 

4.2.5 Implications for Science and Technology 

The better performance of Log2FC transformation in Random Forest models shows that changes 

in gene expression are important signals that these models can effectively recognize. This 

highlights the necessity of aligning preprocessing techniques with the strengths of algorithms in 

biological modeling. 

XGBoost's ability to handle data without needing much preprocessing is fast, but it might hide 

important biological information found in features that depend on scale. The poor results from 

LASSO-regularized models show that reducing the number of features too much can eliminate 

important biological information that correlation-based selection has kept. 

These findings highlight the importance of careful feature selection, adjusting models to account 

for changes, and understanding results in a biological context. Random Forest models, especially 

RF_Log2FC_Tuned, are a strong choice for future research that values clear understanding and 

responsiveness to biological changes. 

Figure 12: Model Performance Summary with Standard Error. Horizontal bar chart illustrating mean R² values 

and standard errors for all model configurations. 
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4.2.6 Recommendation for the Final Model 

We have trained the Random Forest on Log2FC-transformed data and tuned it 

(RF_Log2FC_Tuned), making it the optimal model. It offers: 

• The Random Forest model achieved the highest predictive accuracy among all evaluated 

configurations, with an R-value of 0.4614 to 0.0228. 

• The analysis of feature importance enhances the interpretability of the results. 

• Sensitivity to regulatory patterns based on fold change 

• Consistent performance among biological replicates (minimal SEM) 

We also suggest RF_Zscore_Tuned (R² = 0.4432 ± 0.0294) as an additional model. Although it 

exhibits marginally lower performance compared to RF_Log2FC_Tuned, the difference lacks 

statistical significance and provides robustness via standardized scaling. 

XGBoost models, while stable, are not ideal for biological interpretation because of their 

insensitivity to preprocessing and reduced interpretability. The suggested two-model approach 

offers better prediction results and helps explain how miRNA variant effects work. 

 

4.3 Analysis of Feature Importance 

Following selection of RF_Log2FC_Tuned and RF_Zscore_Tuned as the best models, we 

investigated which features most significantly influence miRNA variant effect on function. 

Examining the top 20 traits across all 13 cell lines for both models, this study identified consistent, 

context-dependent regulating variables.  Comparative feature importance profiles for the Log2FC 

and Z-score models are shown in Figures 4.10 and 4.11. Every figure consists of a stacked bar 

chart displaying cumulative feature contributions for every cell line, a frequency bar chart 

displaying the occurrence of features in top rankings, and a heatmap displaying feature importance 

scores across cell lines. 

4.3.1 Main Feature Classes and Biological Significance  

The primary influencing factor is seed region composition as it has been found at the top of the list 

for both models. With both features, seed_G_percent and GC_content, included in the top 20 

across all cell lines,the earlier one showed the highest ranking among cell lines (0.052–0.109) in 

the Log2FC model closely followed by later one. Highlighting the biological relevance of guanine 

content in seed areas for target recognition and binding, the Z-score model showed a similar 

tendency.  

Post-seed contributions: Features related to post-seed, such post-seed_G_percent and post-

seed_U_percent, shown great relevance. Their relevance in both models indicates that miRNA 

binding and stability depend on nucleotides close to the seed region as well. 
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4.3.2 Cross-Model Consistency and Context Dependence 

In both models, a key group of features—seed_G_percent, GC_content, post_seed_G_percent, and 

motif-like features like UGU_freq—consistently showed high importance and were commonly 

found across different cell lines (Figure 4.10/4.11, top and middle panels). This justifies their 

essential role in miRNA function. Every cell line has unique variability. The stacked bar graphs in 

the lower panels show that their relative relevance differs across cell lines even if they have same 

properties. Features like last_pos_nt_C and ACA_freq showed relevance in particular settings, 

therefore showing the presence of interactions unique to the regulatory environment. 

Figure 13: Feature Importance Analysis – Log2FC Model. Top 20 features across cell lines including heatmap, 

frequency bar, and cumulative contribution. 
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4.3.3 Model Specific Interpretations  

The Log2FC model highlights the need of regulatory reactability. Focusing on elements of control 

that vary with time, the Log2FC-transformed model focused on elements related to stability and 

how expression levels vary. The frequency bar graph shows a strong degree of universality since 

over 10 of the top 20 traits were present in more than 70% of cell lines.  

The Z-Score methodology evaluates baseline expression and variability rather successfully. The 

Z-score model showed more range in ranks. While UUU_freq and ACA_freq gained context-

specific importance, GC_content and seed_G_percent remained important. This data shows how 

responsively the model is to changes in baseline expression. 

Figure 14: Feature Importance Analysis – Z-score Model. Identical layout for comparison against 

Log2FC model. 
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4.3.4 Consequences for Predictive Analysis and Mechanistic Modeling 

This analysis supports two main conclusions: 

• Feature selection strategies should focus on important biological measures, like G/C 

content and position-specific frequencies, instead of using general statistical filters. 

 

• Dual-model frameworks that incorporate both Log2FC and Z-score preprocessing 

provide complementary insights. Log2FC effectively quantifies regulatory magnitude, 

whereas Z-score provides interpretability consistent with standardized metrics. 

 

 

Chapter 5: Discussion, Limitation and Future 

Direction 

5.1 Justification of Methods and Review of Key Studies 

The advancements in ML-miRNA demonstrate a clear progression from early discoveries 

regarding how seed-based RNA regulates genes to the challenging task of predicting how different 

miRNA variations influence various cancer cell lines. The methodological framework was 

significantly influenced by two transformative studies that demonstrated the role of seed sequences 

in determining RNA regulatory specificity and toxicity. Anderson et al. (2008) showed that 

shRNAs with seeds sequences that are extremely abundant had a more toxic effect than those with 

a narrower set. Gao et al. (2018) advanced this concept by discovering that numerous tumor-

suppressive microRNAs possess toxic 6mer seeds, which induce cancer cell death by targeting 

survival genes with C-rich 3'UTRs. They referred to this mechanism as DISE (Death Induced by 

Survival gene Elimination). Their detailed study of all 4,096 possible 6mer seeds showed that G-

rich sequences, particularly those with guanines in the first two positions, were the most harmful. 

Importantly, tumor-suppressive miRNAs such as miR-34a-5p have evolved to incorporate these 

toxic seeds, whereas oncogenic miRNAs have largely avoided them. Gao et al. offered important 

information about how miRNAs can be toxic, but they mainly focused on the 6mer seed area and 

simply labeled sequences as toxic or non-toxic. We acknowledged that by expanding this 

framework to predict a range of variant effects, other than only focusing on seed region, across 

entire miRNA sequences and a subset of sequence permutations necessitated a more advanced 

computational methodology. Our findings encouraged the implementation of Random Forest as 

the primary algorithm for several reasons: its established capacity to capture non-linear 

relationships between sequence features and biological outcomes, its built-in feature importance 

calculations that support biological interpretability, and its resilience to overfitting in high-

dimensional genomic data. We selected Random Forest instead of popular deep learning methods 
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due to our dataset of 3,311 sequences, which, although considerable, was inadequate for training 

complex neural networks without the risk of overfitting. The complicated nature of deep learning 

would have made it hard for us to understand the biological processes we wanted to explain—

being able to interpret the features was crucial for understanding how changes in sequences affect 

their function. We looked at three ways to change the data—raw, z-score normalized, and log2 fold 

change—because we knew that different methods might show us different biological signals. The 

effectiveness of the log2 fold change transformation (R² = 0.4614) backs up this approach, as fold 

changes truly show the scale of gene expression regulation and align with what biologists know 

about miRNA effects. The feature engineering process, which extracted 123 important features 

prior to correlation-based selection, was essential; if we had only used statistical filtering, we 

would have lost important but less common features. Using a biological feature protection 

hierarchy helped retain important features, such as terminal nucleotides and seed composition, 

even when there was not much data available for them in the dataset. The systematic engineering 

of positional variants (N1415, N1819, N2122, min1, plus1) rather than random mutagenesis 

enabled the isolation of position-specific effects while preserving statistical power. This approach 

revealed that, although seed toxicity is predominant, various regions within the miRNA play a role 

in overall function. 

5.2 Biological Implications and Mechanistic Interpretation 

Our findings fundamentally extend Gao et al.'s discovery of toxic seeds in tumor-suppressive 

miRNAs by showing that these ideas are widely applicable to different miRNA sequences and can 

be computed computationally with great accuracy. Our findings from machine learning closely 

match what Gao et al. discovered, which strongly supports each other: seed_G_percent was the 

most important feature in all cell lines (importance scores 0.052-0.109), confirming that G-rich 

seeds play a key role in toxicity. However, our detailed analysis showed that there is more to 

consider beyond the 6mer seed. The significant role of post-seed features (post_seed_G_percent, 

post_seed_U_percent) indicates that miRNA function involves sequences beyond positions 2-7, 

suggesting that while the seed starts the target recognition, the surrounding areas affect how well 

it binds and its regulatory strength. The identification of certain three-nucleotide patterns 

(UGU_freq, ACA_freq) as important features shows that more complex sequence arrangements 

can influence how miRNA is processed, loaded onto RISC, or how easily it can reach its target. 

5.3 Possible Integration with Modern AI/ML Framework in Future  

The ML-miRNA framework is in a good position to both guide and be supplemented by the recent 

developments in the AI-driven biological design. Transformer-based architectures like AlphaFold 

have brought a revolution in protein structure prediction, where the complicated sequence structure 

relationships are learned in a raw data manner (Jumper et al., 2021). Enformer is similarly able to 

predict highly detailed long DNA sequences corresponding to different cell types, suggesting that 

sequence-only models can learn highly detailed structural and functional grammars (Zhang et al., 

2023) and TrASPr+BOS for tissue-specific splicing generation (Gupta et al., 2024). 
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These state-of-the-art models can be significantly initialized with our 31 features constructed by 

biological knowledge that work with much less data and are more interpretable. As an example, in 

a transformer model we may put attention heads to be more attentive to G-content and GC balance 

in the seed region, assisting the model to concentrate on the most significant aspects we observed. 

Alternatively, generative diffusion or variational-autoencoder based methods may synthesize 

novel miRNA variants optimized to achieve particular treatment objectives, such as maximizing 

damage to cancer cells whilst minimizing side effects in healthy tissues, by feedback of the 

predictions of ML-miRNA into a learning process. 

In the future, single-cell transcriptomics, together with simple RNA language models, can be used 

to make predictions that take into account the precise context: we might generate families of 

models that make predictions about the effects of variants on different cell types in tumours, or we 

might use ML-miRNA with patient data to give rapid personalized predictions of the effects of 

variants.  

5.4 Limitations 

Although ML-miRNA's development is rigorous and offers new insights, it does not highlight 

the full potential of this study since there were still some analyses could not be done due to time 

limitations. Other than this, there are many limitations relating to this current study need 

recognition: 

Insufficient Cohort for External Validation 

Using the same collection of 3,311 miRNA variations investigated in 13 cancer cell lines, all model 

training and testing was conducted; cross-validation was used to assess performance. No 

alternative dataset, like an external miRNA screen or patient samples, was used to confirm whether 

the findings generalize more widely outside of this cohort.  Future research should evaluate ML-

miRNA on clinical data or held-out libraries to guarantee strong performance in practical 

environments. 

Scope of Sequence-Only Feature Space 

The predictive feature set comprises 31 sequence-based factors (such as nucleotide composition, 

seed/flanking k-mers and positional motifs) derived from an initial set of 123 by removing less 

relevant features. However, it excludes the other relevant parameters-such as RNA secondary 

structure, the accessibility of the target site, competing endogenous RNAs, as well as interactions 

with RNA-binding proteins-which have been shown to influence miRNA stability and targeting. 

Incorporation of computer-predicted structure (such as RNAfold) or CLIP-seq data may be able to 

incorporate these relevant terms and increase the current R2 =0.46, resulting in more sensible 

results. 
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Chapter 6: Conclusion 

In this thesis, we developed and tested ML-miRNA, a complete machine-learning system designed 

to predict how changes in miRNA sequences affect cancer cell lines. Using a carefully designed 

collection of 3,311 variants and a detailed set of biological features, we showed that how we 

prepare the data and which algorithm we use are very important for getting accurate predictions. 

Our improved Random Forest model, using transformed data, explained the most variation (R² ≈ 

0.46), setting a new standard for predicting the effects of miRNA variants. Importantly, the analysis 

of feature importance identified seed-region G-content and GC percentage as key predictors, 

offering a deeper understanding that supports and builds on important research about seed-related 

toxicity. 

Besides looking at performance metrics, ML-miRNA helps researchers understand how 

predictions are made by linking them to specific sequence features, which aids in creating new 

hypotheses and designing experiments. The framework’s cross-cell-line validation also highlights 

context-dependent regulatory patterns, indicating the importance of cell-type–aware modeling in 

oncology applications. 

In the future, combining different types of data, like RNA secondary structure predictions, CLIP-

seq binding profiles, and single-cell phenotypic readouts, will probably improve our understanding 

and reveal more detailed effects of variants. As deep-learning and generative AI models improve, 

the carefully selected features of ML-miRNA can be useful starting points for transformer-based 

models and guidance in designing sequences. Ultimately, ML-miRNA establishes a foundation for 

personalized evaluation and engineering of miRNA variants, expediting their transformation into 

diagnostic biomarkers and therapeutic agents. 
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