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Abstract

Motivation

Nucleosomes regulate gene expression by blocking DNA access to proteins important for
transcription, requiring the displacement of nucleosomes at promoter regions for transcription
to occur. Their positioning, especially around transcription start sites (TSSs), reflects gene ac-
tivity. This positioning can be inferred from cell-free DNA (cfDNA) in blood, as nucleosomes
protect DNA from cleavage during apoptosis. This protection results in nucleosome-bound
DNA being more likely to appear in cfDNA, whereas DNA from actively transcribed genes,
particularly around the TSS, are more exposed and thus underrepresented due to degradation.
In cfDNA sequencing, this creates an inverse relationship between gene expression and
the read depth around the TSS of the corresponding gene. This relationship suggests the
possibility of modeling gene expression from cfDNA sequencing, offering potential for
noninvasive disease detection based on expression changes.

This study primarily explores deep generative models to predict gene expression from
cfDNA sequencing data. XGBoost is used as a baseline model for comparison. Two variants
of a Deep Generative Decoder (DGD) are applied: a multimodal DGD and a newly developed
factor multimodal DGD. The latter model explicitly separates the contributions of genes
and samples to both cfDNA read depths and gene expression. These models aim to find the
patterns linking the cfDNA signal to transcriptional activity. This approach can potentially
enable noninvasive disease detection by leveraging differences in gene expression between

diseased and normal cells.

Results

Analysis of the data suggested a potential relationship between cfDNA read depth patterns
around the TSS and gene expression levels. However, the models struggled to effectively
learn this pattern. One of the reasons for this could be significant noise within the data. A
key factor contributing to the poor performance of the models is that the cfDNA sequencing
data and gene expression data were obtained from different individuals, which means that
the gene expression associated with the cfDNA pattern may not always be correct, due to

variance between patients.
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Abbreviations

cfDNA cell-free DNA.
ctDNA circulating tumor DNA.

CV Coefficient of Variation.
DGD Deep Generative Decoder.

FFT Fast Fourier Transformation.
FPKM Fragments Per Kilobase of transcript per Million mapped reads.

FPM Fragments Per Million.
GMM Gaussian Mixture Model.
mRNA messenger RNA.

NDR nucleosome-depleted region.

NFR nucleosome-free region.

PBMC Peripheral Blood Mononuclear Cell.
PFE promoter fragmentation entropy.

PIC pre-initiation complex.

RNA-seq RNA-sequencing.

rRNA ribosomal RNA.

SGD stochastic gradient descent.

SVM support vector machine.

TER Transcription End Region.



Abbreviations

TF transcription factor.

TSS Transcription Start Site.
VAE Variational Autoencoder.

WGS Whole Genome Sequencing.

WPS Window Protection Score.

XGBoost Extreme Gradient Boosting.
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