

AARHUS UNIVERSITY NATURAL SCIENCES BIOINFORMATICS RESEARCH CENTRE

Pan-Cancer Exploration of rDNA Copy Number and Its Clinical and Immunological Significance

AUTHOR: Chongming Chen 202303402 Supervisor : Nicolai Juul Birkbak

Abstract

Cancer remains one of the leading causes of death worldwide, and uncovering its underlying mechanisms continues to be a central focus of biomedical research. A representative trait of cancer cells is their unlimited proliferative capacity, which is tightly linked to ribosome biogenesis. This study aimed to investigate the role and mechanism of ribosomal DNA copy number (rDNA CN), which serves as the foundation for ribosome metabolism. I developed a computational pipeline to estimate rDNA CN from whole-genome sequencing (WGS) data and applied it to seven TCGA cancer cohorts to perform a pan-cancer analysis. The analytical framework involved statistical assessments and survival modeling, including Kaplan–Meier and Cox proportional hazards models, to examine the association between rDNA CN and clinical outcomes. Additionally, RNA-seq data from the TCGA cohorts were utilized for immunological profiling and transcriptomic analysis. Notably, a higher 45S rDNA copy number was associated with improved survival outcome in bladder urothelial carcinoma (BLCA) and pancreatic adenocarcinoma (PAAD), although such associations were not found in all other cancer types. Results from immunological and transcriptomic analyses further suggest that the functional impact of rDNA CN is tumor-specific, yet broadly associated with immunological characteristics.

Keywords: Ribosomal DNA (rDNA), Copy number, Pan-cancer, Survival analysis

Contents

Co	nten	ts	I
Lis	t of F	igures	III
Lis	t of T	ables	٧
Ab	brev	iations	VI
1	Intro	oduction	1
	1.1	The Structure of Ribosome DNA and Its Function	1
		1.1.1 Ribosome	1
		1.1.2 The Structure of rDNA	3
		1.1.3 Transcription and Processing of rDNA	4
	1.2	Roles of Ribosomes in Cancer	5
		1.2.1 Ribosome Biogenesis and Dysregulation in Cancer	6
		1.2.2 Nucleolar Stress Response	7
		1.2.3 Ribosomal Proteins	7
		1.2.4 Ribosomal Heterogeneity in Cancer	8
	1.3	Variation of rDNA Sequence and Its Implications in Cancer	8
	1.4	Research Objectives and Content	9
2	Mate	erials and Methods	11
	2.1	Datasets	11
	2.2	Calculation of rDNA Copy Number	12
		2.2.1 Obtaining rDNA array reads	12
		2.2.2 Selecting reference rDNA sequences	12
		2.2.3 Optimization of rDNA Read Alignment: De Novo Mapping vs. Slicing	13
		2.2.4 Estimation of Background Reads Depth (BRD) for Single Copy Exons	
		and Introns	13
		2.2.5 Validation and Calculation of rDNA Copy Number	14
	2.3	Immune Profiling Based on RNA-Seq and WGS	14
	2.4	RNA Sequencing Profile	15
	2.5	Statistical Analysis	16
		2.5.1 Group Comparison and Correlation Analysis	16

		2.5.2	Kaplan-Meier (KM) Survival Analysis	16
		2.5.3	Cox Proportional Hazards Model (CoxPH)	17
	2.6	Code A	Availability	18
3	Resu	ults		19
	3.1	Pan-C	ancer Landscape of rDNA Copy Number Variation and Its Clinical Cor-	
		relation	n	19
		3.1.1	Distribution of rDNA Copy Number Across Cancer Types	19
		3.1.2	Clinical Characteristic and Correlation	20
	3.2	Surviv	al Outcome Analysis	23
	3.3	Immur	ne Analysis	28
		3.3.1	Correlation between rDNA Copy Number and TIL Scores	28
		3.3.2	Correlation between rDNA Copy Number and T/B Cell Fractions	32
	3.4	Transc	riptomic Analysis	35
		3.4.1	Differentially Expressed Genes (DEGs)	35
		3.4.2	Functional Enrichment Analysis	38
4	Disc	ussion		43
5	Con	clusion		46
Bib	oliogr	aphy .		47
Δ	Ann	endix		51

List of Figures

1.1	The structure of Ribosomes .(Adapted from [Gibbons <i>et al.</i> , 2015]) The large 6oS subunit is shown in red, and the small 4oS subunit is shown in blue	2
1.2	The Structure of Ribosome DNA	3
1.3	Schematic diagram illustrating the processing of ribosomal pre-rRNA	5
1.4	The Workflow of this Study . Red indicates using whole-genome sequencing (WGS) data, while green indicates using RNA sequencing (RNA-seq) data	9
2.1	Validation of rDNA Copy Number Calculation Methods . The x-axis shows the 5S rDNA copy number estimated using the slicing method, while the y-axis shows the estimates from de novo mapping (WGS). A strong linear correlation was observed ($R^2 = 1.00$, $p = 3 \times 10^{-10}$)	15
3.1	Pan-cancer Distribution of rDNA Copy Number in Blood Samples from TCGA Cohorts. (A) Distribution of 45S rDNA copy number across PAAD, BLCA, COAD, LUAD, LUSC, GBM, and PRAD; (B) Distribution of 5S rDNA copy number in the same TCGA cancer cohorts. One-way ANOVA tests reveal significant differences in both 28S and 5S rDNA copy numbers across tumor types. (45S: $p < 2 \times 10^{-16}$; 5S: $p < 2 \times 10^{-16}$)	20
3.2	Age distribution and Its Correlation with rDNA Copy Number across TCGA Cohorts. (A) Distribution of patient age at diagnosis across the entire dataset and within individual TCGA cancer cohorts; (B–H) Spearman correlation analyses between age and rDNA copy number for 45S across different cohorts. Weak but statistically significant negative correlations were observed in several cancer types.	21
3.3	Analysis of Sex Differences in Copy Number of 45S rDNA. (A) All datasets ($p = 0.0045$, Wilcoxon test). (B) Across different TCGA cancer cohorts, including BLCA ($p = 0.60$), COAD ($p = 0.25$), LUAD ($p = 0.044$), LUSC ($p = 0.28$), GBM ($p = 0.49$), and PAAD ($p = 0.86$)	22
3.4	Analysis of Tumor Stage Differences in Copy Number of 45S rDNA. (A) All datasets (Wilcoxon rank-sum test, $p=0.15$). (B-F) Across different TCGA cancer cohorts using Wilcoxon rank-sum test, including BLCA ($p=0.06$), COAD ($p=0.40$), LUAD ($p=0.45$), PAAD ($p=0.61$), and LUSC ($p=0.34$). No	
	statistically significant differences were observed	24

OS; (B–H) Forest plot displaying HRs and corresponding p-values across all TCGA	
datasets.	25
KM Survival Curves for Progression-Free Interval (PFI) and Cox regression analysi. (A) PFI; (B–H) Forest plot displaying HRs and corresponding p-values across all	
TCGA datasets	26
HRs and corresponding p-values across all TCGA datasets after correcting for sex,	
	27
ing Lymphocytes across TCGA Cohorts. Spearman correlation coefficients (R) are shown for seven TCGA cancer cohorts. Circle color indicates the direction and strength of the correlation (blue for positive, red for negative), and circle size reflects the absolute correlation coefficient ($ R $). Squares represent statistically significant correlations (p < 0.05), while Circles represent non-significant results	
	29
	31
	33
Correlation of T/B Cell Fraction and 5S rDNA CN across TCGA Cohorts. Spearman r was used to evaluate the correlation.	34
Volcano Plots of DEGs between High and Low 45S rDNA Copy Number Groups across TCGA Cohorts. Red and blue points denote significantly down-regulated	
and up-regulated genes, respectively.	36
Differentially Expressed Genes Frequency across TCGA Cohorts Associated with	
High versus Low 45S rDNA Copy Number. This plot shows genes that were sig-	
nificantly differentially expressed (p < 0.05 and $ \log_2 \mathrm{FC} \geqslant 1$) in at least two	
cancer cohorts	37
GO and KEGG Pathway Enrichment of 45S rDNA in the BLCA cohort. Dot-	
for DEGs between high and low 45S rDNA copy number groups from tumor RNA-	
	39
responds to a TCGA cancer cohort	41
	datasets. KM Survival Curves for Progression-Free Interval (PFI) and Cox regression analysi. (A) PFI; (B−H) Forest plot displaying HRs and corresponding p-values across all TCGA datasets. Cox Regression Analysis after Adjusting for Sex and Age. Forest plot displaying HRs and corresponding p-values across all TCGA datasets after correcting for sex, age and tumor stage. Bubble Plots of Correlation between rDNA Copy Number and Tumor Infiltrating Lymphocytes across TCGA Cohorts. Spearman correlation coefficients (R) are shown for seven TCGA cancer cohorts. Circle color indicates the direction and strength of the correlation (blue for positive, red for negative), and circle size reflects the absolute correlation coefficient (R). Squares represent statistically significant correlations (p < 0.05), while Circles represent non-significant results (p ≥ 0.05). Correlation of Tumor Infiltrating Lymphocytes and 5S rDNA CN in PAAD and PRAD. Fifteen tumor infiltrating lymphocytes (TIL) and a total TIL score are evaluated for correlation with Copy Number; DC: dendritic cells. Correlation of T/B Cell Fraction and 45S rDNA CN across TCGA Cohorts. Spearman r was used to evaluate the correlation. Correlation of T/B Cell Fraction and 5S rDNA CN across TCGA Cohorts. Spearman r was used to evaluate the correlation. Correlation Potes of DEGs between High and Low 45S rDNA Copy Number Groups across TCGA Cohorts. Red and blue points denote significantly down-regulated and up-regulated genes, respectively. Differentially Expressed Genes Frequency across TCGA Cohorts Associated with High versus Low 45S rDNA Copy Number. This plot shows genes that were significantly differentially expressed (p < 0.05 and log₂ FC ≥ 1) in at least two cancer cohorts. GO and KEGG Pathway Enrichment of 45S rDNA in the BLCA cohort. Dotplots show significantly enriched Gene Ontology terms including biological process (BP), cellular component (CC), and molecular function (MF), along with KEGG, for DEGs between high and low 45S rDNA copy number group

List of Tables

2.1	TCGA cohorts Overview.																11
Z.I	1 COM COMOLIS OVERVIEW.									•		 					11

Abbreviations

TCGA The Cancer Genome Atlas Bladder Urothelial Carcinoma **BLCA COAD** Colon Adenocarcinoma Glioblastoma Multiforme **GBM**

Lung Adenocarcinoma LUSC Lung Squamous Cell Carcinoma **PAAD** Pancreatic Adenocarcinoma **PRAD** Prostate Adenocarcinoma

Ribosomal DNA rDNA rRNA Ribosomal RNA RP Ribosomal Protein

LUAD

CNV Copy Number Variation

OS Overall Survival

PFI Progression-Free Interval

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

WGS Whole Genome Sequencing

RNA-seq **RNA Sequencing**

Differentially Expressed Gene **DEG** Tumor Microenvironment **TME**

TCR T Cell Receptor

IGH Immunoglobulin Heavy Chain TIL Tumor-Infiltrating Lymphocyte Cox Proportional Hazards Model CoxPH

HR Hazard Ratio

Confidence Interval CI