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Abstract

The immune system undergoes profound changes with aging and in response to diseases
such as COVID-19, resulting in significant inter-individual variability. Traditional bulk
analysis methods obscure crucial intra-individual heterogeneity, limiting the identification
of precise immune health markers. Single-cell RNA sequencing (scRNA-seq) overcomes
these limitations, providing high-resolution insights into cellular diversity, yet introduces

challenges such as data sparsity, batch effects, and interpretability.

In this thesis, I developed and validated an interpretable computational pipeline utiliz-
ing a Linearly Decoded Variational Autoencoder (LDVAE) to harmonize heterogeneous
scRNA-seq datasets, enabling the identification of biologically meaningful gene signa-
tures correlated with clinical outcomes. The LDVAE effectively integrated data from
three independent COVID-19 Peripheral Blood Mononuclear Cells (PBMCs) datasets,
significantly reducing batch-related technical noise while preserving biologically relevant
information. Predictive modeling using derived gene signatures achieved stratification
of patients by disease severity (macro-average AUC up to 0.74), highlighting classical

monocytes as critical predictors of clinical outcomes.

On the other hand, application of this pipeline to healthy aging datasets revealed limita-
tions associated with incomplete batch correction due to uneven age distributions across
datasets, highlighting the sensitivity of batch integration methods to dataset composi-
tion. Despite these challenges, the results demonstrate the potential of LDVAE-based
approaches for developing interpretable immune health markers, facilitating personalized

medicine strategies.
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Abbreviations

e AIDA: Asian Immune Diversity Index

e AUC: Area Under the Curve

e CCA: Canonical Correlation Analysis

e COVID-19: Coronavirus Disease 2019

e DLGM: Deep Latent Gaussian Model

e DLVM: Deep Latent Variable Model

e ELBO: Evidence Lower BOund

e F'DR: False Discovery Rate

e GO: Gene Ontology

e HSC/MPP: Hematopoietic Stem Cells and Multipotent Progenitors
e KL: Kullback—Leibler divergence

e LDVAE: Linearly Decoded Variational Autoencoder

e MAIT: Mucosal-associated invariant T cells

e MNN: Mutual Nearest Neighbors

e NK: Natural Killer (cells)

e PBMC: Peripheral Blood Mononuclear Cells

e PCA: Principal Component Analysis

e QC: Quality Control

e ROC: Receiver Operating Characteristic

e scRNA-seq: Single-cell RNA sequencing

e scVI: Single-cell Variational Inference

e STRING: Search Tool for the Retrieval of Interacting Genes/Proteins
e t-SNE: t-distributed Stochastic Neighbor Embedding

e TCR: T Cell Receptor

e UMAP: Uniform Manifold Approximation and Projection
e UMI: Unique Molecular Identifier

e VAE: Variational Autoencoder

e XGBoost: eXtreme Gradient Boosting

e ZINB: Zero-Inflated Negative Binomial
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