

Investigating the B-Cell Receptor in bladder and kidney cancer to understand its role in anti-cancer immunity and its potential implications for cancer treatment and outcomes

Liliane Zoe Bader M.Sc. Thesis June 15th, 2025

Liliane Zoe Bader

Cancer Evolution & Immunology, Aarhus University Hospital
Investigating the B-Cell Receptor in bladder and kidney cancer to understand its role in
anti-cancer immunity and its potential implications for cancer treatment and outcomes.
M.Sc. Thesis
June 2025

Aarhus University

Department of Molecular Biology and Genetics Bioinformatics Research Centre Universitetsbyen 81, building 1872, 3rd floor DK-8000 Aarhus C, Denmark

https://www.birc.au.dk

This document was typeset in \LaTeX .

ABSTRACT

B cells and their receptors (BCRs) play an increasingly recognized role in antitumor immunity, complementing the more extensively studied T-cell responses. This thesis investigates the BCR repertoires in bladder and kidney cancers, aiming to characterize their clonality, diversity and gene usage patterns, and to explore their associations with clinical outcomes. Utilizing high-throughput immune repertoire sequencing data from over 350 patient samples, including healthy controls, comprehensive bioinformatic and statistical analyses were conducted. Key findings include increased clonotype expansion and reduced diversity in cancer samples compared to healthy controls, along with distinct V(D)J gene usage patterns. Importantly, lower BCR diversity correlated with adverse clinical outcomes, such as reduced survival. UMAP-based dimensionality reduction and correlation heatmaps were applied to reveal associations between specific immunoglobulin gene segments and clinical variables, suggesting potential biomarkers for disease prognosis. These results emphasize the relevance of B cells in cancer immunology and support the integration of BCR repertoire analysis into future diagnostic and therapeutic strategies.

This thesis was written with the Cancer Evolution & Immunology Group at the Department of Molecular Medicine (MoMa), Aarhus University Hospital. I am very grateful to my supervisor, Professor Nicolai Juul Birkbak, head of the research group, for his guidance and support throughout the project. I would also like to thank the other members of the group, especially Postdoc Randi Istrup Juul, PhD student Asbjørn Kjær and Postdoc Ragnhild Liborius Laursen, for their valuable support.

Department of Molecular Medicine Aarhus University Hospital Brendstrupgårdsvej 21A 8200 Aarhus N, Denmark https://www.moma.dk

Thesis submitted:

June 15th, 2025

Author:

Liliane Zoe Bader liba@clin.au.dk au752655@uni.au.dk

Pages: 60

Appendices: A-D

Supervisor:

Nicolai Birkbak

Professor, PhD, MSc, Group leader Cancer Evolution & Immunology Department of Molecular Medicine Aarhus University Hospital nbirkbak@clin.au.dk

The contents of this M.Sc. thesis are freely accessible and distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. All analysis code used in this thesis is available at https://github.com/liliab98/bcr_analysis. Furthermore, none of the contents of this thesis includes plagiarism.

CONTENTS

1	Intr	Introduction		1
	1.1	Motiv	ration	1
	1.2	Biolog	gical Background	1
		1.2.1	B cells	1
		1.2.2	B cells in and around Tumors	3
		1.2.3	BCR structure	3
		1.2.4	Generating BCR Diversity	3
	1.3	State of	of the art	5
		1.3.1	Initial BCR Repertoire Analysis	5
		1.3.2	BCR Repertoires in Cancer Research	5
		1.3.3	Research Gaps	6
2	Met	hods		7
	2.1	Data (Collection and Preprocessing	7
		2.1.1	Clinical Context and Sample Collection	7
		2.1.2	Sequencing Technology	7
		2.1.3	Bioinformatic Preprocessing	8
		2.1.4	Integration with Clinical Metadata	8
		2.1.5	Limitations of the Data	8
	2.2	Analy	rsis	9
		2.2.1	Clonotype Analysis	9
		2.2.2	Diversity Analysis	11
		2.2.3	Survival Analysis	13
		2.2.4	Group Comparisons: Healthy vs. Cancer	14
		2.2.5	Gene Usage Computation	15
		2.2.6	Dimensionality Reduction with UMAP	16
		2.2.7	Statistical Associations Between Gene Usage and Clinical	
			Variables	17
3	Res	ults		20
	3.1	Clono	type Analysis	20
		3.1.1	Unique Clonotypes and Read Depth	20
		3.1.2	Clonotype Expansion	21
	3.2	Divers	sity Analysis	23
		3.2.1	Normalized Shannon Diversity Index and Gini Index	23

A	App	endix		51
	4.4	Concl	usion	45
	4.3		e Directions and Outlook	
	4.2	5		
	4.1	_	retation of Results	
4	Disc	cussion		35
			Variables	32
		3.4.2	Statistical Associations Between Gene Usage and Clinical	
		3.4.1	Dimensionality Reduction with UMAP	31
	3.4	Gene	Usage Analysis	31
		3.3.4	Clonotypes Accounting for 50% of Reads	31
		3.3.3	Top 10 Clone Fraction	30
		3.3.2	Shannon Diversity	29
		3.3.1	Read Counts	29
	3.3	Group	Comparisons: Healthy vs. Cancer	29
		3.2.3	Survival Analysis	27
		3.2.2	Diversity and Clinical Variables	24

LIST OF FIGURES

Figure 1	General overview of the development of a B cell and its	
	functions. (Figure from [1])	2
Figure 2	General overview of the BCR structure and components.	
	(Figure from [2])	4
Figure 3	General overview of the Bioinformatic Preprocessing	8
Figure 4	Unique clonotype count and read depth per chain for the	
	bladder dataset.	20
Figure 5	Unique clonotype count and read depth per chain for the	
	renal dataset	21
Figure 6	Proportions of expanded and non-expanded clonotypes	
	per chain in the bladder cohort	22
Figure 7	Proportions of expanded and non-expanded clonotypes	
	per chain in the renal cohort.	22
Figure 8	Diversity measures for the bladder cohort	23
Figure 9	Diversity measures for the renal cohort	24
Figure 10	Associations between normalized Shannon diversity and	
	clinical variables in the bladder cohort	25
Figure 11	Associations between normalized Shannon diversity and	_
	clinical variables in the renal cohort	26
Figure 12	Survival analysis and Cox proportional hazards model	
_	for the bladder cohort	27
Figure 13	Survival analysis and Cox proportional hazards model	
	for the renal cohort	28
Figure 14	Comparison of BCR repertoire features across healthy	
	controls, renal cancer, and bladder cancer samples	30
Figure 15	UMAP projections of IgH V gene usage in renal and blad-	
	der samples by age and health status	31
Figure 16	Correlation between IgH V gene usage and clinical vari-	
	ables in the renal cancer cohort	32
Figure 17	Correlation between IgH V gene usage and clinical vari-	
	ables in the bladder cancer cohort	33
Figure 18	Appendix: Correlation between unique molecule counts	
	(UMIs) and read counts across IgH clonotypes	54
Figure 19	Appendix: Comparison of BCR repertoire features across	
	healthy controls, renal cancer, and bladder cancer sam-	
	ples split by chain (IgH, IgK, IgL) and combined	55

Figure 20	Appendix: Correlation between IgH D and J gene usage
	and clinical variables in the renal and bladder cancer co-
	hort

LIST OF TABLES

Table 1	Theoretical comparison between Shannon Diversity In-
	dex and Gini Index in immune repertoire analysis 12
Table 2	Appendix: Overview of Columns for Bladder Dataset 51
Table 3	Appendix: Overview of Columns for Renal Dataset 52
Table 4	Appendix: RStudio Version Information 53
Table 5	Appendix: R packages 53

ABBREVIATIONS

BCR B-Cell Receptor

BH Benjamini–HochbergBMI Body Mass Index

CDR Complementarity-Determining Region

CNV Copy Number Variation

CRP C-Reactive Protein

CSR Class Switch RecombinationctDNA Circulating Tumor DNADNA Deoxyribonucleic Acid

GC Germinal Center HR Hazard Ratio

HPC High Performance ComputingIgH Immunoglobulin Heavy Chain

IgK Immunoglobulin KappaIgL Immunoglobulin LambdaLDH Lactate Dehydrogenase

NGS Next-Generation Sequencing

ORF Open Reading Frame

PCA Principal Component AnalysisPCR Polymerase Chain Reaction

QC Quality Control

SHM Somatic Hypermutation

TCR T-Cell Receptor

TIL-Bs Tumor-Infiltrating B LymphocytesTLS Tertiary Lymphoid Structures

UMAP Uniform Manifold Approximation and Projection

UMI Unique Molecular Identifier