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Abstract

Antibiotic resistance is a growing global concern, with the emergence and spread of
antibiotic-resistant bacteria continuing to increase. Antibiotics are small metabolites
naturally produced by microorganisms to ensure their survival in competitive environ-
ments by inhibiting or killing other competitive microorganisms. Conventional treat-
ment options are getting exhausted, calling for an urgent need to discover novel antibi-

otics.

Here, I apply an in silico approach to discover natural products with potential an-
tibacterial effects against ESKAPE pathogens by utilizing the bioinformatics pipeline,
antiSMASH, to mine genomes of bacterial soil isolates for biosynthetic gene clusters
(BGCs). In the study, unsupervised and supervised learning methods along with phylo-
genetic analysis, were integrated to find associations between observed bioactivity and
the presence of specific BGCs. A total of 558 BGCs were predicted by antiSMASH, of
which several BGCs were flagged in the analyses after correlating these with the results
from the bioactivity assays. Some of these BGCs have reported antimicrobial activities
with proposed broad- and narrow-spectrum activity, such as epilancin 15x, paenilam-
icin, and tridecaptin, which highlights the promising potential of combining supervised

learning methods with laboratory work to the discovery of novel antibiotics.
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