

Developing a Deep Learning Model to Predict Mutation Probabilities at Single Base Resolution

Nimród Grandpierre Master's Thesis June 15th, 2025

ABSTRACT

Deep learning has undergone a resurgence over the past decade and a half, proving to be highly effective across a wide range of domains, including genomics. The mutational landscape - a topic within the field of genomics - has previously been investigated by applying both traditional statistical learning methods and neural networks. In this thesis, a new neural network-based approach is presented that aims to infer mutation outcome at single base resolution across the human genome. A key hypothesis in this domain that has gathered significant proof is that the most prevalent factor in a substitution being developed is the local context around the nucleotide site. This insight suggests that a *k*-mer representation of local nucleotide context captures the primary signal in mutation prediction. By utilizing both the local context and additional features that inform predictions about the characteristics of the broader region around the site, neural network models gain a comprehensive understanding of factors determining mutation outcome, leading to impressive predictive results.

CONTENTS

1	Intr	oduction	1
	1.1	Background and Motivation	1
	1.2	Research Problem and Objectives	3
	1.3	Neural Networks	4
		1.3.1 Fundamentals	4
		1.3.2 Deep Learning in Genomics	9
	1.4	Biological Background	10
		1.4.1 Sources of Data	12
		1.4.2 Existing Models around Mutation Rates	15
2	Met	hods	19
	2.1	Data	19
	2.2	Preprocessing	20
	2.3	Benchmark Model	24
	2.4	Model Architecture	25
		2.4.1 Training Configuration	29
	2.5	Experimental Setup	30
	2.6	Evaluation Metrics	31
3	Res	ults	33
	3.1	Model Performance	33
		3.1.1 "A" Central Nucleotide	33
		3.1.2 "C" Central Nucleotide	37
	3.2	Best Model Selection	38
	3.3	Performance Across Different <i>k</i> -mer Lengths and Bin Sizes	38
	3.4	Feature Importance	39
	3.5	Summary of Key Results	39
4	Disc	cussion	41
•	4.1	Interpretation of Results	41
	•	1	

	4.2	Strengths and Limitations	45
5	Conc	clusion, Future Work	49
A	Appe	endix	57