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ABSTRACT

Deep learning has undergone a resurgence over the past decade and a half, prov-
ing to be highly effective across a wide range of domains, including genomics.
The mutational landscape - a topic within the field of genomics - has previously
been investigated by applying both traditional statistical learning methods and
neural networks. In this thesis, a new neural network-based approach is pre-
sented that aims to infer mutation outcome at single base resolution across the
human genome. A key hypothesis in this domain that has gathered signifi-
cant proof is that the most prevalent factor in a substitution being developed
is the local context around the nucleotide site. This insight suggests that a k-
mer representation of local nucleotide context captures the primary signal in
mutation prediction. By utilizing both the local context and additional features
that inform predictions about the characteristics of the broader region around
the site, neural network models gain a comprehensive understanding of factors

determining mutation outcome, leading to impressive predictive results.
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