
Hidden Markov Models
Training – Selecting model parameters



What we know

 The terminology and notation of hidden Markov models (HMMs)

 The forward- and backward-algorithms for determining the 
likelihood p(X) of a sequence of observations, and computing the 
posterior decoding.

 The Viterbi-algorithm for finding the most likely underlying 
explanation (sequence of latent states) of a sequence of observation

 How to implement the Viterbi-algorithm using log-transform (and the 
forward- and backward-algorithms using scaling).

Now

 Training, or how to select model parameters (transition and emission 
probabilities) to reflect either a set of corresponding (X,Z)'s, (or just a 
set of X's) ...



Selecting “the right” parameters

H     H     L     L     H

Assume that (several) sequences of observations X={x
1
,...,x

n
} and 

corresponding latent states Z={z
1
,...,z

n
} are given ...

How should we set the model parameters, i.e. transition A, π,  and 
emission probabilities Ф, to make the given (X,Z)'s most likely? 



Selecting “the right” parameters
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Intuition: The parameters should reflect what we have seen ...

Assume that (several) sequences of observations X={x
1
,...,x

n
} and 

corresponding latent states Z={z
1
,...,z

n
} are given ...

How should we set the model parameters, i.e. transition A, π,  and 
emission probabilities Ф, to make the given (X,Z)'s most likely? 



H     H     L     L     H

Selecting “the right” transition probs

A
jk
 is the probability of a transition from state j to state k, and π

k
 is 

the probability of starting in state k ...

How many times is the transition 
from state j to state k taken

How many times is a transition 
from state j to any state taken
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Selecting “the right” emission probs

If we assume discrete observations, then Φ
ik
 is the probability of 

emitting symbol i from state k ...

How many times is symbol i 
emitted from state k

How many times is a symbol 
emitted from state k
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Selecting “the right” parameters

Assume that (several) sequences of observations X={x
1
,...,x

n
} and 

corresponding latent states Z={z
1
,...,z

n
} are given ...

We simply count how many times each outcome of the multinomial 
variables (a transition or emission) is observed ...
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which is what we mathematically want ...
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Selecting “the right” parameters

Assume that (several) sequences of observations X={x
1
,...,x

n
} and 

corresponding latent states Z={z
1
,...,z

n
} are given ...

We simply count how many times each outcome of the multinomial 
variables (a transition or emission) is observed ...

Any problems? What if e.g. the transition from state j to k is not 
observed, then probability A

jk
 is set to 0. Practical solution: Assume 

that every transition and emission is seen once (pseudocount) ... 

This yield a maximum likelihood estimate (MLE) θ* of p(X,Z | θ), 
which is what we mathematically want ...



Example
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Without pseudocounts:

A
HH

 = 1/2 p(sun|H) = 1
A

HL
 = 1/2 p(rain|H) = 0

A
LH

 = 1/2 p(sun|L) = 1/2
A

LL
 = 1/2 p(rain|L) = 1/2

π
H
 = 1

π
L
 = 0
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Without pseudocounts:

A
HH

 = 1/2 p(sun|H) = 1
A
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 = 1/2 p(rain|H) = 0

A
LH

 = 1/2 p(sun|L) = 1/2
A
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 = 1/2 p(rain|L) = 1/2

π
H
 = 1

π
L
 = 0

With pseudocounts:

A
HH

 = 2/4 p(sun|H) = 4/5
A

HL
 = 2/4 p(rain|H) = 1/5

A
LH

 = 2/4 p(sun|L) = 2/4
A

LL
 = 2/4 p(rain|L) = 2/4

π
H
 = 2/3

π
L
 = 1/3
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What if only (several) sequences of observations X={x
1
,...,x

n
} is 

given, i.e the corresponding latent states Z={z
1
,...,z

n
} are unknown?

How should we set the model parameters, i.e. transitions A, π,  
and emission probabilities Ф, to make the given X's most likely? 
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and emission probabilities Ф, to make the given X's most likely? 

Maximize w.r.t. θ ...



Selecting “the right” parameters

What if only (several) sequences of observations X={x
1
,...,x

n
} is 

given, i.e the corresponding latent states Z={z
1
,...,z

n
} are unknown?
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How should we set the model parameters, i.e. transitions A, π,  
and emission probabilities Ф, to make the given X's most likely? 

Maximize w.r.t. θ ...

Direct maximization of the likelihood (or log-likelihood) is hard ...



Practical Solution - Viterbi training

1.Decide on some initial parameter θ0

2.Find the most likely sequence of states Z* explaining X using the 
the Viterbi Algorithm and the current parameters θi

3.Update parameters to θi+1 by “counting” (with pseudo counts) 
according to (X,Z*).

4.Repeat 2-3 until P(X,Z* | θi) is satisfactory (or the Viterbi 
sequence of states does not change).

A more “practical” thing to do is Viterbi Training: 



A more “practical” thing to do is Viterbi Training: 

Finds a (local) maximum of:

Not a MLE (because right-hand side isn't a likelihood), but works ok 

1.Decide on some initial parameter θ0

2.Find the most likely sequence of states Z* explaining X using the 
the Viterbi Algorithm and the current parameters θi

3.Update parameters to θi+1 by “counting” (with pseudo counts) 
according to (X,Z*).

4.Repeat 2-3 until P(X,Z* | θi) is satisfactory (or the Viterbi 
sequence of states does not change).

Practical Solution - Viterbi training



A solution - Expectation Maximization

When iterated, the likelihood p(X|θ) converges to a (local) maximum

E-Step: Define the Q-function:

i.e. the expectation of the log-likelihood of the complete 
data (i.e. observations X and underlying states Z) as a 
function of θ

M-Step: Maximize Q(θ, θold) w.r.t. θ



Maximizing the likelihood

Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We can write:

Direct maximization of the likelihood (or log-likelihood) is hard ...



Maximizing the likelihood

Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We can write:

Direct maximization of the likelihood (or log-likelihood) is hard ...

This sums to 1 ...
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Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We can write:

Direct maximization of the likelihood (or log-likelihood) is hard ...

The expectation (under θold) of the log-likelihood of the complete data 
(i.e. observations X and underlying states Z) as a function of θ
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to estimate a set θ which yields a better likelihood. We can write:

Direct maximization of the likelihood (or log-likelihood) is hard ...



Maximizing the likelihood
Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We have:

The increase of the log-likelihood can thus be written as:



Maximizing the likelihood
Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We have:

The increase of the log-likelihood can thus be written as:

The relative entropy of p(Z|X,θold) relative to  p(Z|X,θ), i.e. ≥ 0



Maximizing the likelihood
Assume that we have valid set of parameters θold, and that we want 
to estimate a set θ which yields a better likelihood. We have:

By maximizing the expectation Q(θ, θold) w.r.t. θ, we increase the 
likelihood, hence name expectation maximization ...

The increase of the log-likelihood can thus be written as:



EM for HMMs

E-Step: Define the Q-function:

i.e. the expectation of the log-likelihood of the complete 
data (i.e. observations X and underlying states Z) as a 
function of θ

M-Step: Maximize Q(θ, θold) w.r.t. θ

When iterated, the likelihood p(X|θ) converges to a (local) maximum

For HMMs Q has a closed form and maximization can be performed 
explicitly. Iterate until no or little increase in likelihood is observed,
or some maximum number of iterations is reached ...



EM for HMMs
Init: Pick “suitable” parameters (transition and emission 

probabilities). Observe that if a parameter is 
initialized to zero, it remains zero ...

E-Step: 1) Run the forward- and backward-algorithms with the 
current choice of parameters (to get the params of Q-func).

Stop?: 2) Compute the likelihood p(X|θ), if sufficient (or another 
stopping criteria is meet) then stop.

M-Step: 3) Compute new parameters using the values stored by 
the forward- and backward-algorithms. Repeat 1-3.



EM for HMMs
We want a closed form for   
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EM for HMMs
We want a closed form for   

Taking the log yields:



EM for HMMs
We want a closed form for   

Taking the log yields:

Taking the expectation (under θold  and X) over Z yields Q(θ, θold), i.e:



EM for HMMs

A K-vector where entry k is the 
prob γ(z

nk
) of being in state k in 

the n'th step ...

A KxK-table where entry (j,k) 
is the prob ξ(z

n-1,j
, z

nk
) of 

being in state j and k in the 
(n-1)'th and n'th step ...

E-Step: To calculate Q, we must compute the expectations E(z
1k

), 
E(z

nk
), and E(z

n-1,j
,z

nk
). Consider the probabilities:  
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EM for HMMs

M-Step: If we assume discrete observables x
i 
, then maximizing 

the above w.r.t. θ, i.e. A, π, and Ф
k 
, yields:  



EM for HMMs

M-Step: If we assume discrete observables x
i 
, then maximizing 

the above w.r.t. θ, i.e. A, π, and Ф
k 
, yields:  

Expected number of transitions 
from state j to state k

Expected number of transitions 
from state j to any state



EM for HMMs

M-Step: If we assume discrete observables x
i 
, then maximizing 

the above w.r.t. θ, i.e. A, π, and Ф
k 
, yields:  

Expected number of times 
symbol i is emitted from state k

Expected number of times a 
symbol is emitted from state  k



EM for HMMs

M-Step: If we assume discrete observables x
i 
, then maximizing 

the above w.r.t. θ, i.e. A, π, and Ф
k 
, yields:  



EM for HMMs

M-Step: If we assume discrete observables x
i 
, then maximizing 

the above w.r.t. θ, i.e. A, π, and Ф
k 
, yields:  

Compare this to the formulas when X and Z where given:



Computing γ and ξ  

Can be computed efficiently using the forward- and backward-algorithm



Computing the new parameters

n

k

α(z
nk

) or β(z
nk

)



Computing the new parameters

n

k

α(z
nk

) or β(z
nk

)

The old parameters

The new parameters



EM for HMMs - Summary

Running time per iteration:  

 O(K2N + KK + K2NK + KDN), where D is number of observable symbols

By using memorization in 3), we can improve it to O(K2N + KDN)

Init: Pick “suitable” parameters (transition and emission 
probabilities). Observe that if a parameter is 
initialized to zero, it remains zero ...

E-Step: 1) Run the forward- and backward-algorithms with the 
current choice of parameters (to get t.he params of Q-func).

Stop?: 2) Compute the likelihood p(X|θ), if sufficient (or another 
stopping criteria is meet) then stop.

M-Step: 3) Compute new parameters using the values stored by 
the forward- and backward-algorithms. Repeat 1-3.



Using the scaled values in EM  

Can be computed using the modified forward- and backward-algorithm



Using the scaled values in EM  

Can be computed using the modified forward- and backward-algorithm

Error in book



Computing the new parameters

...

n

k

α^(z
nk

) or β^(z
nk

)

1 N

c
1

c
n



Summary

 Selecting parameters by counting to reflect a set of (X,Z)'s, 
i.e. if full information about observables and corresponding 
latent values is given.

 Selecting parameters by Viterbi Training or Expectation 
Maximization to reflect a set of X's, i.e. if only  information 
about observables is given.



 Selecting parameters by counting to reflect a set of (X,Z)'s, 
i.e. if full information about observables and corresponding 
latent values is given.

 Selecting parameters by Viterbi Training or Expectation 
Maximization to reflect a set of X's, i.e. if only  information 
about observables is given.

Summary

How to deal with multiple “training sequences”?



When multiple (X, Z)'s are given ...

Assume that (several) sequences of observations X={x
1
,...,x

n
} and 

corresponding latent states Z={z
1
,...,z

n
} are given ...

... just sum each nominator and denominator over all (X,Z)'s, i.e. we 
divide total counts ...



When multiple X's are given ...

Assume that a set sequences of observations X={x
1
,...,x

n
} is given 

... just sum each nominator and denominator over all X's, i.e. we 
divide total expectation, and we must run the forward- and 
backward algorithms for each training sequence X ...
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