Hidden Markov Models

Some useful extensions

The "forward-coding" part

Avoiding internal start- or stop-codons

Encode the emission of each legal codon as a sequence of states. Many states (60*3=180) and non-trivial transitions (60*59=3540)!

Other ideas?

Autoregressive HMMs

The probability of emitting \mathbf{x}_n depends also on \mathbf{x}_{n-1} and \mathbf{x}_{n-2} . The basic algorithms remain the same:

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{x}_{n-1}, \mathbf{x}_{n-2}, \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{x}_{n-1}, \mathbf{x}_{n-2}, \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Autoregressive HMMs

For each state, we just have to state the conditional probabilities. For a 4-letter DNA alphabet this corresponds to 4*4*4 emission prob.

The probability of emitting \mathbf{x}_n depends also on \mathbf{x}_{n-1} and \mathbf{x}_{n-2} . The basic algorithms remain the same:

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{x}_{n-1}, \mathbf{x}_{n-2}, \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{x}_{n-1}, \mathbf{x}_{n-2}, \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Adjusting our simple HMM

Make it possible to emit a variable number of symbols depending on the state. Fx when being in state \mathbf{z}_n the model emits $d_{\mathbf{z}_n}$ symbols, where $d_{\mathbf{z}_n}$ is an integer ≥ 0 .

The basic algorithms can easily be reformulated, fx Viterbi:

Make it possible to emit a variable number of symbols depending on the state. Fx when being in state \mathbf{z}_n the model emits $d_{\mathbf{z}_n}$ symbols, where $d_{\mathbf{z}_n}$ is an integer ≥ 0 .

The basic algorithms can easily be reformulated, fx Viterbi:

 $\omega(n,k)$: The probability of the most likely path generating the first n symbols and ending in state k.

$$\omega(n,k) = \max_{k' \to k} \omega(n - d_k, k') p(k' \to k) p(\mathbf{x}_n \dots \mathbf{x}_{n-d_k+1} | k)$$

Make it possible to emit a variable number of symbols depending on the state. Fx when being in state \mathbf{z}_n the model emits $d_{\mathbf{z}_n}$ symbols, where $d_{\mathbf{z}_n}$ is an integer ≥ 0 .

The basic algorithms can easily be reformulated, fx Viterbi:

 $\omega(n,k)$: The probability of the most likely path generating the first n symbols and ending in state k.

$$\omega(n,k) = \max_{k' \to k} \omega(n - d_k, k') p(k' \to k) p(\mathbf{x}_n \dots \mathbf{x}_{n-d_k+1} | k)$$

Transition prob from state *k'* to *k*

Emission prob of emitting d_k symbols from state k.

Make it possible to emit a variable number of symbols depending on the state. Fx when being in state \mathbf{z}_n the model emits $d_{\mathbf{z}_n}$ symbols, where $d_{\mathbf{z}_n}$ is an integer ≥ 0 .

The basic algorithms can easily be reformulated, fx Viterbi:

 $\omega(n,k)$: The probability of the most the first n symbols and en

Special case: If $d_k = 0$ then the state is called a *silent* state.

$$\omega(n,k) = \max_{k' \to k} \omega(n - d_k, k') p(k' \to k) p(\mathbf{x}_n \dots \mathbf{x}_{n-d_k+1} | k)$$

Transition prob from state *k'* to *k*

Emission prob of emitting d_k symbols from state k.

Adjusting our simple HMM

History and applications of HMMs

History of HMMs

Hidden Markov Models were introduced in statistical papers by Leonard E. Baum and others in the late1960s. One of the first applications of HMMs was speech recognition in the mid-1970s.

In the late 1980s, HMMs were applied to the analysis of biological sequences. Since then, many applications in bioinformatics...

Applications of HMMs in bioinformatics

prediction of protein-coding regions in genome sequences modeling families of related DNA or protein sequences prediction of secondary structure elements in proteins ... and many others ...