Hidden Markov Models

Terminology, Representation and Basic Problems
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The next two weeks

Hidden Markov models (HMMs):

Wed 20/11: Terminology and basic algorithms.
Fri 22/11: Implementing the basic algorithms.
Wed 27/11: Implementing the basic algorithms, cont.

Selecting model parameters and training.
Fri 29/11: Selecting model parameters and training, cont.
Extensions and applications.

We use Chapter 13 from Bishop's book “Pattern Recognition and Machine
Learning”. Rabiner's paper “A Tutorial on Hidden Markov Models [...]"
might also be useful to read.

Blackboard and http://birc.au.dk/~cstorm/courses/ML_e19



What is machine learning?

Machine learning means different things to different people,
and there is no general agreed upon core set of algorithms
that must be learned.

For me, the core of machine learning is:

Building a mathematical model that captures some desired
structure of the data that you are working on.

Training the model (i.e. set the parameters of the model)
based on existing data to optimize it as well as we can.

Making predictions by using the model on new data.




Data — Observations

A sequence of observations from a finite and discrete set, e.g.
measurements of weather patterns, daily values of stocks, the
composition of DNA or proteins, or ...

XZXl,Xg,...,XN

Typical question/problem: How likely is a given X, i.e. p(X)?

We need a model that describes how to compute p(X)



Simple Models (1)

Observations are independent and identically distributed

Too simplistic for realistic modelling of many phenomena



Simple Models (2)

The n'th observation in a chain of observations is influenced only by
the n-1'th observation, i.e.

p(X’rL‘Xla « o 9X?’L—1) — p(Xn‘X'rL—l)

The chain of observations is a 1st-order Markov chain, and the
probability of a sequence of N observations is

p(Xla ‘e 7XN) — Hp(xn‘xla I 7Xn—1) :p(Xl) Hp(Xn‘Xn—l)

n=1 n—2



The model, i.e. p(x_| x_.): A sequence of observations:
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Hidden Markov Models

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

Latent values

H H L L H

Observations

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)



Hidden Markov Models

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

Latent values
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If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)



Hidden Markov Models

What if the n'th observation in a chain of observations is influenced

The joint distribution
- N 1 N
p(Xh"')XNaZla"')ZN) :p(zl) Hp(zn|zn—1) p(Xn|Zn)
| n=2 1 n=1
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If the hidden variables are discrete and form a Markov chain, then it

is a hidden Markov model (HMM)
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Emission probabilities
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Observations

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)



Transition probabilities

Notation: In Bishop, the hidden variables z_ are positional vectors,
e.g. ifz =(0,0,1) then the model in step n is in state k=3

Transition probabilities: If the hidden variables are discrete with K
states, the conditional distribution p(z | z_.) is a Kx K table A, and

the marginal distribution p(z.) describing the initial state is a K
vector 1T

The probability of going from
state j to state k is:

Ajk = p(an = 1|Zn—1,j = 1) Tk Ep(zlk = )

ZAJ’“_ Zwkzl
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Emission probabilities

Emission probabilities: The conditional distributions of the
observed variables p(x | z ) from a specific state

If the observed values x_are discrete (e.g. D symbols), the emission

probabilities @ is a KxD table of probabilities which for each of the K
states specifies the probability of emitting each observable ...

K

p(Xn|Zna Cb) — H p(Xn|¢k)an
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HMM joint probability distribution

p(X,Z‘@) :p(Z1|7T) Hp(zn‘zn—laA) p(Xn‘Znagb)

n—>2 n=1

_ Latent states: Model parameters:

X ={x1,...,xn} Z=A{z,...,z2y} O ={m A, ¢}

Z1 Z9 Zp—1 Zip, Zy+1
I X1 i X9 I Xn—-1 I Xn i Xn+1

If A and @ are the same for all n then the HMM is homogeneous



Example — 2-state HMM

Observable: {A, C, G, T}, States: {0,1}
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Example — 7-state HMM

Observable: {A, C, G, T}, States: {0,1, 2, 3, 4, 5, 6}
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HMMs as a generative model

A HMM generates a sequence of observables by moving from
latent state to latent state according to the transition probabilities
and emitting an observable (from a discrete set of observables,

l.e. a finite alphabet) from each latent state visited according to
the emission probabilities of the state ...

Model M: A run follows a sequence of states:
iR H H L L H

QC ::Qg;r‘aﬁ ;:5%;11—5 D

0 13
SODEY sl (SO And emits a sequence of symbols:




Computing P(X,Z)

p(X,Z|O®) = p(zi1|7) | | | p(z0|20—1, A)

n—>2

def joint_prob(x, z):

Returns the joint probability of x and z

p = init_prob[z[@]] * emit_prob[z[0]][x[0]]

for i in range(1, len(x)):

N

n=1

p(Xn‘Zna¢)

p = p * trans_prob[z[i-1]1[z[i]] * emit_prob[z[i]][x[i]]

return p



p(X, Z‘@) — p(zl ‘7‘-)

def jo

$ python
> seqloO
p(x,z) =

$ python
> s5eq200
p(x,z) =

$ python
> seq300
p(x,z) =

$ python
> s5eq400
p(x,z) =

$ python
> seq500
p(x,z) =

$ python
> s5eq600
p(x,z) =

Computing P(X,Z)

- N -
H p(2n|Zn—1,A)
| n=2 _
hmm_jointprob.py hmm-7-state.txt test seql@O.txt
1.8619524290102162e-65
hmm_jointprob.py hmm-7-state.txt test seq200.txt
1.6175774997005771e-122
hmm_jointprob.py hmm-7-state.txt test seq300.txt
3.0675430597843052e-183
hmm_jointprob.py hmm-7-state.txt test seq400.txt
4.860704144302979e-247
hmm_jointprob.py hmm-7-state.txt test seq500.txt
5.258724342206735e-306
hmm_jointprob.py hmm-7-state.txt test seq600.txt
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p(X, Z‘@) — p(zl ‘7‘-)

def jo

$ python
> seqloO
p(x,z) =

$ python
> s5eq200
p(x,z) =

$ python
> seq300
p(x,z) =

$ python
> s5eq400
p(x,z) =

$ python
> seq500
p(x,z) =

$
> s5eq600

p(x,z) =

Computing P(X,Z)

hmm_jointprob.py hmm-7-state.

1.8619524290102162e-65

hmm_jointprob.py hmm-7-state.

1.6175774997005771e-122

hmm_jointprob.py hmm-7-state.

3.0675430597843052e-183

hmm_jointprob.py hmm-7-state.

4.860704144302979%e-247

hmm_jointprob.py hmm-7-state.

5.258724342206735e-306

jointprob.py hmm-7-state

0.0

- N 1 N
| | p(Zn|Zn—1, A) p(Xn‘Zna ¢)
n=2 1 n=1
txt test seql00.txt
txt test _seq200.txt
txt test_seq300.txt
txt test_seq400.txt [X[l]]
txt test seq500.txt

.txt test seq600.txt

Should be >0 by construction of X and Z



A floating point number n is represented as n = f* 2°cf. the IEEE-754

Representing numbers

standard which specify the range of fand e

Itemn Single precision Double precision |

Bits in sign - 1 1 "

L - Bits in exponent 8 11 |

“ Fraction B 1 n > !

SE g,r: R its in fraction 23 o |

Bits, total 32 64 |

) v 5 1

= Exponent system Excess 127 Excess 1023 I

Bis1 11 52 Exponent range | -126t0 +127 -1022 to +1023 |
(| Exeonent | i Smallest normalized number | =10 o~ WS |
Nsign : w28 024 |
Largest normalized number approx. & approx. 2 |

= Decimal range approx. 10 10 10°® approx. 1078 1o 10‘109}

Smallest denormalized number  approx. 10™% approx. 107°2% |

Figure B-5. Characteristics of [EEE Fioating-point numbers.

See e.g. Appendix B in Tanenbaum's Structured Computer
Organization for further details.



The problem — Too small numbers
For the simple HMM, the joint-probability p(X,Z) is
p(X,Z)zl-Hl-H%: (%) =27"

If n > 467 then 2" is smaller than 10°*, i.e. cannot be represented

1

[\

A simple HMM



The problem — Too small numbers

For the simple HMM, the joint-probability p(X,Z) is

N N 1 | n
p<XvZ>:1-H1-H§:(§) _gon
n=2 n=1

If n > 467 then 2" is smaller than 10°*, i.e. cannot be represented

No problem representing :
log p(X,Z) = -n A
as the decimal range is approx -10°* to 10°* @

A simple HMM



Solution: Compute log P(X,Z)

- N 1 N
p(X,Z|®) = p(z1|7) | [| p(zn|Zn—1, A)| T] p(x0|2n, 9)
| n=2 4 n=1

Use log (XY) =log X + log Y, and define log O to be -inf

N N
log p(X, Z|®) =log p(z1|7) + > _log p(zn|zn—1, A) + > log p(xp|2n, $)

n=2 n=1



Solution: Compute log P(X,Z)

N N
log p(X, Z|®) = log p(z1|7) + > _log p(zn|zn—1, A) + > log p(xp|2n, d)

n—=22 n=1

def log_joint_prob(self, x, z):

Returns the log transformed joint probability of x and z
logp = log(init_prob[z[@]]) + log(emit_prob[z[0]][x[@]])
for i in range(1, len(x)):
logp = logp + log(trans_probl[z[i-111[z[il]) + log(emit_prob[z[i]l][x[i]l])
return logp



Solution: Compute log P(X,Z)

N N
log p(X, Z|®) = log p(z1|7) + > _log p(zn|zn—1, A) + > log p(xp|2n, d)

n=2 n=1

$ python hmm_log jointprob.py hmm-7-state.txt test seql@0.txt

s~ > seql0eoO
def }ﬁg—JOlnt log p(x,z) = -149.04640541441395
Returns t $ python hmm_log jointprob.py hmm-7-state.txt test_seq200.txt
nun > s5eq200
log p(x,z) = -280.43445168576596
logp = lc
for i1 in $ python hmm_log_jointprob.py hmm-7-state.txt test_seq300.txt
> seq300 . .
LogP 10g p(x.z) = -420.25219508298494 [z[1]] [x[i]])
return Lc
$ python hmm_log jointprob.py hmm-7-state.txt test seq400.txt
> seq400
log p(x,z) = -567.1573346564519
$ python hmm_log jointprob.py hmm-7-state.txt test seq500.txt
> seq500
log p(x,z) = -702.9311499793356

$ python hmm_log jointprob.py hmm-7-state.txt test seq600.txt
> s5eq600
log p(x,z) = -842.0056730984585



Using HMMs

= Determine the likelihood of a sequence of
observations.

= Find a plausible underlying explanation (or
decoding) of a sequence of observations.



Using HMMs

= Determine the likelihood of a sequence of
observations.

= Find a plausible underlying explanation (or
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p(X|®) = Zp X,Z|0)



Using HMMs

= Determine the likelihood of a sequence of
observations.

= Find a plausible underlying explanation (or
decoding) of a sequence of observations.

p(X|®) = Zp X,Z|0)

The sum has KNterms, but it turns out that it can be computed
in O(K?N) time, but first we will consider decoding



Decoding using HMMs

Given a HMM © and a sequence of observations X = x_,...,x, ,

find a plausible explanation, i.e. a sequence Z* = z*1,...,z*Nof
values of the hidden variable.



Decoding using HMMs

Given a HMM © and a sequence of observations X = x_,...,x, ,

find a plausible explanation, i.e. a sequence Z* = z* ,...,z" of
values of the hidden variable.

Viterbi decoding
Z* is the overall most likely explanation of X:

7" = arg m&mxp(X, Z|0©)



Decoding using HMMs

Given a HMM © and a sequence of observations X = x_,...,x, ,

find a plausible explanation, i.e. a sequence Z* = z*1,...,z*Nof
values of the hidden variable.

Viterbi decoding
Z* is the overall most likely explanation of X:

7" = arg m&mxp(X, Z|0©)

Posterior decoding

z* is the most likely state to be in the n'th step:

2, = argmaxp(z,[xi. ... xx)

T



Summary

= Terminology of hidden Markov models (HMMs)

= Viterbi- and Posterior decoding for finding a
plausible underlying explanation (sequence of
hidden states) of a sequence of observation

= Next: Algorithms for computing the Viterbi and
Posterior decodings efficiently
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