Hidden Markov Models

Training — Selecting model parameters
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What we know

= The terminology and notation of hidden Markov models (HMMs)

* The forward- and backward-algorithms for determining the
likelihood p(X) of a sequence of observations, and computing the
posterior decoding.

= The Viterbi-algorithm for finding the most likely underlying
explanation (sequence of latent states) of a sequence of observation

= How to implement the Viterbi-algorithm using log-transform (and the
forward- and backward-algorithms using scaling).

Now

= Training, or how to select model parameters (transition and emission
probabilities) to reflect either a set of corresponding (X,Z)'s, (or just a
set of X's) ...



Selecting “the right” parameters

Assume that (several) sequences of observations X={x,...,x } and
corresponding latent states Z={z,...,z } are given ...

1
( :
.r'll, -

=l
g > [~
N,
=l
|

™
H

L
=~ ®
[y

i

4

=

How should we set the model parameters, i.e. transition A, 1r, and
emission probabilities ®, to make the given (X,Z)'s most likely?
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How should we set the model parameters, i.e. transition A, 1r, and
emission probabilities ®, to make the given (X,Z)'s most likely?

Intuition: The parameters should reflect what we have seen ...



Selecting “the right” transition probs
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A, i1s the probability of a transition from state j to state k, and m, is
the probability of starting in state k ...

How many times is the transition
from state j to state k taken

N

D=1 2n=2 #n—1,j%n How many times is a transition
from state j to any state taken
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A, i1s the probability of a transition from state j to state k, and 7, is
the probability of starting in state k ...

How many times is the transition
from state j to state k taken

N

D=1 2n=2 #n—1,j%n How many times is a transition

21k from state j to any state taken
M — 174
< 21 ZD




Selecting “the right” emission probs
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If we assume discrete observations, then @. is the probability of
emitting symbol / from state k ...

How many times is symbol J
N emitted from state k
. anl “nkLni
Gik = ~ =
anl “nk How many times is a symbol
emitted from state k




Selecting “the right” parameters

Assume that (several) sequences of observations X={x,...,x } and
corresponding latent states Z={z,...,z } are given ...
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We simply count how many times each outcome of the multinomial
variables (a transition or emission) is observed ...
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Assume that (several) sequences of observations X={x,...,x } and
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We simply count how many times each outcome of the multinomial
variables (a transition or emission) is observed ...

This yield a maximum likelihood estimate (MLE) 0* of p(X,Z | 9),
which is what we mathematically want ...

fx2(0) =p(X,Z[®) 6 = argmax fx z(6)
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Without pseudocounts:

A, =12 p(sun|H) = 1
A, =1/2 p(rain|H) =0
A, =12 p(sun|L) = 1/2
A, =12 p(rain|L) = 1/2
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Selecting “the right” parameters

What if only (several) sequences of observations X={x_,...,X } is
given, i.e the corresponding latent states Z={z,...,z_} are unknown?
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How should we set the model parameters, i.e. transitions A, T,
and emission probabilities ®, to make the given X's most likely?
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How should we set the model parameters, i.e. transitions A, T,
and emission probabilities @, to make the given X's most likely?

@ximize p(X|0) = p(X,Z|6) wrt 8 >




Selecting “the right” parameters

What if only (several) sequences of observations X={x_,...,X } is
given, i.e the corresponding latent states Z={z,...,z_} are unknown?

p(X|0) = Zp X,Z|0)

How should we set the model parameters, i.e. transitions A, T,
and emission probabilities @, to make the given X's most likely?

@ximize p(X|0) = 3" p(X,Z|6) w.r.t.9.>




Practical Solution - Viterbi training

A more “practical” thing to do is Viterbi Training:
1.Decide on some initial parameter 8°

2.Find the most likely sequence of states Z* explaining X using the
the Viterbi Algorithm and the current parameters 0’

3.Update parameters to 0™ by “counting” (with pseudo counts)
according to (X,Z*).

4.Repeat 2-3 until P(X,Z* | 0") is satisfactory (or the Viterbi
sequence of states does not change).



Practical Solution - Viterbi training

A more “practical” thing to do is Viterbi Training:
1.Decide on some initial parameter 0°

2.Find the most likely sequence of states Z* explaining X using the
the Viterbi Algorithm and the current parameters 6!

3.Update parameters to 0™ by “counting” (with pseudo counts)
according to (X,Z*).

4.Repeat 2-3 until P(X,Z* | 0") is satisfactory (or the Viterbi
sequence of states does not change).

Finds a (local) maximum of:
VITx (0) = mzaxp(X, Z|0)
The identified parameters 0* is not a MLE of p(X | 8), but works “ok”



Summary: Training-by-Counting

Training-by-Counting: We are given a sequence of observations
X={x_,...,x } and the corresponding latent states Z={z ,...,z }. We

want to find a model:
OT,c = arg mgxp(X, Z|0) = arg mgx log p(X, Z|O)

This can be done analytically by counting the frequency by which
each transition and emission occur in the training data (X, Z).

If only X={x_,...,x } is given, then we want to find a model:

Ox = arg mgxp(X]@) = arg max log p(X|©)



Summary: Viterbi Training

Viterbi Training: We are given a sequence of observations
X={x,...,x }. Pick an initial set of parameters 6° . and compute the

best explanation of X under assumption of these parameters using
the Viterbi algorithm:

77, = argmax p(X, Z|@?/it) = arg max log p(X, Z|6° )

7 Vit
Compute @' . from 6° and Z°  using TbC and iterate:
Oy, = argmaxp(X, Z5,,|©) = arg max log p(X, Z5;,[©)
7+, = arg mzaxp(X, Z|©! )= arg max logp(X,Z|6r )

Vit

p(X|©%..) is usually close to p(X|O%) , but no guarantees



Expectation Maximization

EM Training: We are given a sequence of observations
X={x_,...,x }. Pick an initial set of parameters 68°_ and consider the

expectation of log p(X, Z | 6) over Z (given Xand 6°_ ) as a
function of ©:

EMX,@%M (@) — EZ|X,@OEM (logp(Xa Z|@)) — ZP(Z|X7 @OEM) logp(Xa Z|@)
Z

For HMMs, we can find 8'_, analytically, and iterate to get 0'_

O, = arg max EMx g0 (©)

p(X|Oky ) converges towards a (local) maximum of p(X|0%)



Expectation Maximization

E-Step: Define the Q-function:

Q(0,0°%) => "p(Z|X,0°)log p(X, Z|O)
Z

l.e. the expectation of log p(X, Z | 0) over Z (given X and
8°!4) as a function of 8

M-Step: Maximize Q(0, 6°9) w.r.t. ©

EMx g04(0) = Ezx @[logp(X,Z|0)] = Y p(Z|X,0°)logp(X, Z|O)
Z

©" = arg max EMx go1a (O)

When iterated, the likelihood p(X|8) converges to a (local) maximum



Maximizing the likelihood

Direct maximization of the likelihood (or log-likelihood) is hard ...

p(X,Z|©)
p(Z‘X, @)

p(X[0) = Zp (X,Z[6) p(X[0) =

Assume that we have valid set of parameters 0°"9, and that we want
to estimate a set 8 which yields a better likelihood. We can write:

logp(X[®) = > p(Z|X,0°%)logp(X|0O)
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Maximizing the likelihood

Direct maximization of the likelihood (or log-likelihood) is hard ...
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p(Z‘X, @)

p(X[0) = Zp (X,Z[6) p(X[0) =

Assume that we have valid set of parameters 0°"9, and that we want
to estimate a set 8 which yields a better likelihood. We can write:

Q0,0 = " p(Z|X,0°%) log p(X, Z|O)
Z

log p(X1O)

> p(ZX,0°) log p(X o)

Z

= ) p(Z|X,0%%)(log p(X,Z|O) — log p(Z|X, ©))

= > p(Z|X,0°logp(X, Z|0) — > p(Z|X,0°) log p(Z|X, ©)

= Q(0,0°) =) p(Z|X,0°%)logp(Z|X, O)
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Maximizing the likelihood

Assume that we have valid set of parameters 6°'9, and that we want
to estimate a set 8 which yields a better likelihood. We have:

logp(X|©) = Q6,0 - p(Z|X,0°)logp(Z|X, V)
Z
logp(X|0°) = Q(0°4,0°) =) "p(Z|X,0°)log p(Z|X, ©°'9)
Z

The increase of the log-likelihood can thus be written as:

log p(X|©) — log p(X|©°!Y) =

p(Z|X, ©°4)

old old (old old
Q(0,07) —Q(6°, 0% + > _p(Z|X, 6°) log = mrer s

Z




Maximizing the likelihood

Assume that we have valid set of parameters 6°'9, and that we want
to estimate a set 8 which yields a better likelihood. We have:

logp(X|©) = Q6,0 - p(Z|X,0°)logp(Z|X, V)
Z
logp(X|0°) = Q(0°4,0°) =) "p(Z|X,0°)log p(Z|X, ©°'9)
Z

The increase of the log-likelihood can thus be written as:

log p(X|©) — log p(X|©°!Y) =

old
Q(o, @old) B Q(@old’ @old) ZP(Z\Xa @old) log p(Z|X, ©°9)

p(ZX,0)

The relative entropy of p(Z|X,0°"9) relative to p(Z|X,0), i.e. =0



Maximizing the likelihood

Assume that we have valid set of parameters 6°'9, and that we want
to estimate a set 8 which yields a better likelihood. We have:

logp(X|©) = Q6,0 - p(Z|X,0°)logp(Z|X, V)
Z
logp(X|0°) = Q(0°4,0°) =) "p(Z|X,0°)log p(Z|X, ©°'9)
Z

The increase of the log-likelihood can thus be written as:

1ng(X|@) — logp(X\@Old) > Q(@’ @Old) _ Q(@(ﬂd, @old)

By maximizing the expectation Q(0, 6°9) w.r.t. 0, we do not
decrease the likelihood, hence name expectation maximization ...



EM for HMMs

E-Step: Define the Q-function:
Q(0,0°%) => "p(Z|X,0°)log p(X, Z|O)
Z

l.e. the expectation of log p(X, Z | 0) over Z (given X and
8°!4) as a function of 8

M-Step: Maximize Q(0, 6°9) w.r.t. ©

For HMMs Q has a closed form and maximization can be performed
explicitly. Iterate until no or little increase in likelihood is observed,
or some maximum number of iterations is reached ...

When iterated, the likelihood p(X|0) converges to a (local) maximum



Init:

E-Step:

Stop?:

M-Step:

EM for HMMs

Pick “suitable” parameters (transition and emission
probabilities). Observe that if a parameter is
Initialized to zero, it remains zero ...

1) Run the forward- and backward-algorithms with the
current choice of parameters (to get the params of Q-func).

2) Compute the likelihood p(X|0), if sufficient (or another
stopping criteria is meet) then stop.

3) Compute new parameters using the values stored by
the forward- and backward-algorithms. Repeat 1-3.



EM for HMMs

We want a closed form for Q(©,0°9) = " p(Z|X,0°)log p(X, Z|O)
Z

p(X,Z1®) = p(z|r) [ p(zn|za-1,A) [ p(xn|2n, )
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Taking the log yields:

N K K

log p(X,Z|®) = Zzlk logme 4+ > Y Y Zn—1,7nk log Aji + Z Zznk log p(Xn|¢rk)

n=2 j=1 k=1 n=1k=1




EM for HMMs

We want a closed form for Q(©,0°9) = " p(Z|X, 0°'%)log p(X, Z|O)

p(X,Z1®) = p(z|r) [ p(zn|za-1,A) [ p(xn|2n, )

Taking the log yields:

N K K
log p(X,Z|®) = Zzlk logme 4+ > Y Y Zn—1,7nk log Aji + Z Zznk log p(Xn|¢rk)
n=2 j=1 k=1 n=1k=1

Taking the expectation (under 8°¢ and X) over Z yields Q(0, 68°9), i.e:

N K K N

K K
Q(0,0°4d) = ZE 21k ) log mi + 7 YS\E (2n—1,2nk) log A, + Z ZE(an) log p(xy, |0k )
k=1

n=2 j=1 k=1 n=1k=1




EM for HMMs

N K K N

K K
Q(@, @Old) = ZE 21k logﬂ_k -+ Y YYE Zn 1 jznkz log Ajk; =+ Z ZE Znk logp Xn’(rbk)
k=1

n=2j=1 k=1 n=1 k=1

E-Step: To calculate Q, we must compute the expectations E(z, ),
E(z ), and E(zn_1’jznk). Consider the probabilities:

A K-vector where entry k is the
Y(zp) = p(z,|X, ©°'Y) prob y(z ) of being in state k in
the n'th step ...

A KxK-table where entry (/,k)

B oldy IS the prob §(zn_u z ) of being

§(Zn-1,2n) = p(2n-1,2n|X, O7F) in state j and k in the (n-1)'th
and n'th step ...



EM for HMMs

N K K N

K K
Q(O,0°d) = ZE 21k ) log T + Y YS‘E (2n—1,j2nk) log A + ZZE Znk ) log p(xy, |dr)
k=1

n=2 j=1 k=1 n=1k=1

E-Step: To calculate Q, we must compute the expectations E(z, ),
E(z ), and E(zn_”znk). Consider the probabilities:

A K-vector where entry k is the
Y(zp) = p(z,|X, ©°'Y) prob y(z ,) of being in state k in

the n'th step ... -
A KxK-table whe
g(zn—h Zn) — p(zn—la Zp, ‘X; @Old) s the prOb E"(Z”-U an) of bemg

in state j and k in the (n-1)'th
and n'th step ...




EM for HMMs

K N K
Q(0,0°) =) E(z1;) log mi + Y YS‘E (2n—1,72nk) log Aji + Y Y E(zni) log p(, | )
k=1

n=2 j=1 k=1 n=1k=1

E-Step: To calculate Q, w E(an) — ’Y(an)

E(z ), and E(z_, ,z ). Col
' " E(Zn—l,jznk) — f(zn—l,jznk)
Y(zp) = p(z,|X, ©°'Y) prob y(z ) of being in state k in

the n'th step ...

A KxK-table w’

B old\ Isthe prob &(z .z ) of being
§(2Zn—1,2n) = P(Zn-1,2n|X, 07 in state j and k in the (n-1)'th
and n'th step ...




EM for HMMs

Q(0,0°9)

K N K K N

K
Z zu)logmi + > Y Y E(zn—1,j2nk) log Ajy + ZZ Znk) 1og p(xy | D)

k=1 n=2 j=1 k=1 n=1 k=1

M-Step: If we assume discrete observables x,, then maximizing
the above w.r.t. 0, i.e. A, 7, and @, yields:




EM for HMMs

K N K K N

K
Q(@a ®Old) — Z’Y <1k 1Og7Tk + Y S‘Yé Zn 1 jznk log Ajk Z znk lng Xn’¢k>

k= n=2 j=1 k=1 n=1

M-Step: If we assume discrete observables x,, then maximizing
the above w.r.t. 0, i.e. A, 1, and @, yields:

Expected number of transitions
from state j to state k

N
Agk zn 2 g(zn—l jznk) _

>t Yones E(Za1,52n1) Expected number of transitions
from state j to any state

v(21k)

Zle v(%15)

ML —



EM for HMMs

K N K K N

K
Q(@a ®Old) — Z’Y <1k 1Og7Tk + Y S‘Yé Zn 1 jznk log Ajk Z znk lng Xn’¢k)

k= n=2 j=1 k=1 n=1

M-Step: If we assume discrete observables x,, then maximizing
the above w.r.t. 0, i.e. A, 1, and @, yields:

Expected number of times

N symbol / is emitted from state k
e = _
Zn:l 7 (Znk) Expected number of times a

symbol is emitted from state k




EM for HMMs

Q(0,0°) =

K N K K

N

K
ny 216) log T + 3 Y > E(2n1,%nk) log Aji + Z 7V (2Znk) log p(Xn| o)

k= n=2 j=1 k=1

M-Step: If we assume discrete observables x,, then maximizing
the above w.r.t. 0, i.e. A, 1, and @, yields:

Ajr =

S0 &(2n—1.j, Znk)

Zl 1Zn 2 §(Zn—1,55 Znl)

v(21k)

>

K
j=1"

(215)

N
ik =

25:1 V(2nk)




EM for HMMs

N K K

K N K
Q(@a ®Old) — Z’V <1k 10g7Tk T y S‘ S‘é Zn 1 jznk log Ajk Z Z “nk logp Xn’¢k>
k: :

M-Step: If we assume discrete observables x,, then maximizing
the above w.r.t. 0, i.e. A, 1, and @, yields:

Ajk ZT]:] 2£(zn ! jjznk) T = ;(Zlk) ¢k _ 27];]:1 V(an’)xn’b
L N
Zl 1 Zn 2 £(zn 1,75 an) ijl V(le) anl ﬂ)/(znk)
Compare this to the formulas when X and Z where given:
N N
Agk‘ Zn 9 “n—1,j4nk — 21k ¢Zk _ anl Znk LT

K N
Zl 1 Zn 2 Zn—1,j%nl Zj:l 215 > 1 Znk




Computing y and ¢

zn) = p(znlX)
_ P(X1yee s Xy Zn)P(Xnpte 1y - - - s XN |Zn)
p(X)
_ a(zn ) 3(2n)
p(X)
§(2Zn-1,2n) = p(Zn-1,2n|X)
_ (X1, 3 X1, Zn—1)P(Zn|Zn—1)P(Xn|2Zn)P(Xnt1y - - s XN |Zn)
p(X)
_ (2Zn—1)B8(2n)p(2n|2n—1)p(Xn |2n)
p(X)

Can be computed efficiently using the forward- and backward-algorithm



Computing the new parameters
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Computing the new parameters
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EM for HMMs - Summary

Init: Pick “suitable” parameters (transition and emission
probabilities). Observe that if a parameter is
Initialized to zero, it remains zero ...

E-Step: 1) Run the forward- and backward-algorithms with the
current choice of parameters (to get t.he params of Q-func).

Stop?: 2) Compute the likelinood p(X|0), if sufficient (or another
stopping criteria is meet) then stop.

M-Step: 3) Compute new parameters using the values stored by
the forward- and backward-algorithms. Repeat 1-3.

O(K*N + KK + K2NK + KDN), where D is number of observable symbols
By using memorization in 3), we can improve it to O(K*N + KDN)



Using the scaled values in EM

V(2Zn) = p(za|X)
_ (X1, oy Xy Zn )P (Xt 15+ -+ XN |Z0)
p(X)
_ a(zn)B(2n)
p(X)
= a(zn)B(Zn)
§(Zn-1,2n) = p(zn-1,2,]|X)
_ p(X1,. .., X1, %n—1)P(Zn|Zn—1)p(Xn|Zn)p(Xnt1, - - - XN |Zn)
p(X)
_ (zn—1)8(2n)p(Zn |Zn—1)P(Xn |2Zn)
p(X)

Can be computed using the modified forward- and backward-algorithm



Using the scaled val  »X =1l
/Y(Zn) — p(zn‘X) B n ) e
— p(Xl""7Xnazn)p(xn—|—1,--.,)< Oz(Zn) - (nl;[l m) ( n)
p(X)
— Oé(Zn)ﬁ(Zn) B N
- =% B(zn) = (m1;[+1cm> B(zn)
— a(zn)B(Zn)
E(Zn_1,2n) = p(zZp_1,2,|X)
_ p(x1,. .., Xn_1,2n—1)P(Zn|Zn_1)p(Xn|2Zn)p(Xnit, .- -, XN |2Zn)
p(X)

Can be computed using the modified forward- and backward-algorithm



Computing the new parameters
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Summary

= Selecting parameters by counting to reflect a set of (X,Z)'s,
I.e. if full information about observables and corresponding
latent values is given.

= Selecting parameters by Viterbi Training or Expectation
Maximization to reflect a set of X's, i.e. if only information
about observables is given.



Summary

= Selecting parameters by counting to reflect & set of (X,Z)'s
I.e. if full information about observables and corres Ing
latent values is given.

= Selecting parameters by Viterhi Training or Expectation

Maximization to reflect '.e. if only information
about observables is given.



When multiple (X, Z)'s are given ...

Assume that (several) sequences of observations X={x,...,x } and
corresponding latent states Z={z,...,z } are given ...

N N
" > o Zn—1,j%nk Y D =1 Znkni
gk T — (bzk: —

— K N K N
D 1m1 Dam—2 Zn—1,j%nl ijl 215 D 1 Znk

... Just sum each nominator and denominator over all (X,Z)'s, i.e. we
divide total counts ...

N
2 (X,Z) 2on=2 Fn—1,j%nk 2(X,z) 41k
Ajr = T = 2

— K N
Z(X,Z) D 1=1 2 n=2 #n—1,j%nl Z(X,Z) ijl “1j

N
Z(X,Z) D n=1 ZnkTni
N
2 (X,Z) 2an=1Znk

Gik =




When multiple X's are given ...

Assume that a set sequences of observations X={x_,...,x } is given

Ay = 25:2 §(2n—1,55 Znk) — v(z1k) dir = 27]:]:1 Y(Znk ) Tni
jk = =

S N (a1 2n) YK ) T YN ()

... Just sum each nominator and denominator over all X's, i.e. we
divide total expectation, and we must run the forward- and
backward algorithms for each training sequence X ...

Ay — > x S E(2n—1j, Znk)  Yx(zw)
1k —

Tk =

ZXZZ 1Zn 2 §(Zn-1,5, 2nl) ZXZJ 1 V(215)

) x Zn 1 Y (Znk)Tni
DX En 1Y (Znk)

Gike =



Summary: Training-by-Counting

Training-by-Counting: We are given a sequence of observations
X={x_,...,x } and the corresponding latent states Z={z ,...,z }. We

want to find a model:
OT,c = arg mgxp(X, Z|0) = arg mgx log p(X, Z|O)

This can be done analytically by counting the frequency by which
each transition and emission occur in the training data (X, Z).



Summary: Training-by-Counting
Training-by-Counting: We are given a sequence of observations

X={x_,...,x } and the corresponding latent states Z={z ,...,z }. We
want to find a model:

O = arg mgxp(X, Z|0) = arg max log p(X,Z|O)

This can be done analytically by counting the frequency by which
each transition and emission occur in the training data (X, Z).

If only X={x_,...,x } is given, then we want to find a model:
Ox = arg mgxp(X]@) = arg max log p(X|©)

Finding 0%, is hard. We have seen two approaches.



Summary: Viterbi Training

Viterbi Training: We are given a sequence of observations
X={x,...,x }. Pick an initial set of parameters 6° . and compute the

best explanation of X under assumption of these parameters using
the Viterbi algorithm:

77, = argmax p(X, Z|@?/it) = arg max log p(X, Z|6° )

7 Vit
Compute @' . from 6° and Z°  using TbC and iterate:
Oy, = argmaxp(X, Z5,,|©) = arg max log p(X, Z5;,[©)
7+, = arg mzaxp(X, Z|©! )= arg max logp(X,Z|6r )

Vit

p(X|©%..) is usually close to p(X|O%) , but no guarantees



Summary: Expectation Maximization

EM Training: We are given a sequence of observations
X={x_,...,x }. Pick an initial set of parameters 68°_ and consider the

expectation of log p(X, Z | 6) over Z (given Xand 6°_ ) as a
function of ©:

EMX,@%M (@) — EZ|X,@OEM (logp(Xa Z|@)) — ZP(Z|X7 @OEM) logp(Xa Z|@)
Z

For HMMs, we can find 8'_, analytically, and iterate to get 0'_

O, = arg max EMx g0 (©)

p(X|©%,) converges towards a (local) maximum of p(X|0%)
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