
ML E2022 - Week 11 - Theoretical
Exercises

Hidden Markov Models

Exercise 1: Questions to slides Hidden Markov Models - Training:

1. Consider the simple "weather-HMM" with a transition diagram as shown on slide

3. Assume that we do not know the model parameters i.e. the start-, transition-,

and emission-probabilities, but that we are given two pairs of  as training

data.

These pairs are: ( HHLLLHHHHLLLLHH , SSSRRSSSRRRRSSS ) and

( LLHHLLLHHHHLLHH , RRRSSRRRSSSRRRS ), where H and L are the two states

of the model, and S and R are the two emissions sunshine and rain.

Use Training-by-Counting to set the model parameters according to this training

data.

Solution:

We count the number of starts, emissions, and transitions in each of two pairs of 

, and set the probabilities accordingly:

HHLLLHHHHLLLLHH

SSSRRSSSRRRRSSS

and

LLHHLLLHHHHLLHH

RRRSSRRRSSSRRRS

Counting starts and setting start probabilities:

#(start in H) = 1

#(start in L) = 1

P(start in H) = 1 / (1+1) = 0,5

P(start in L) = 1 / (1+1) = 0,5

Counting transitions and setting transition probabilities:

#(H -> H) = 5 + 5 = 10

(X, Z)

(X, Z)



#(H -> L) = 2 + 2 = 4

P(H -> H) = 10 / (10+4) = 0,71

P(H -> L) = 4 / (10+4) = 0,29

#(L -> H) = 2 + 3 = 5

#(L -> L) = 5 + 4 = 9

P(L -> H) = 5 / (5+9) = 0,36

P(L -> L) = 9 / (5+9) = 0,64

Counting emissions and setting emission probabilities:

#(S from H) = 7 + 5 = 12

#(R from H) = 1 + 3 = 4

P(S from H) = 12 / (12+4) = 0,75

P(R from H) = 4 / (12+4) = 0,25

#(S from L) = 2 + 1 = 3

#(R from L) = 5 + 6 = 11

P(S from L) = 3 / (3+11) = 0,21

P(R from L) = 11 / (3+11) = 0,79 `

1. Consider Viterbi training as explained on slides 18-19. If a parameter in the initial

model  is set to zero, i.e. if a particular transition or emission probability is set

to zero, then it will remain zero during all the iterations of Viterbi training (if we

do not perform pseudo counts). Why?

Solution:

If a particular transition or emission probability is set to zero in , then this

transition or emission cannot be part of the most likely sequence of hidden

states determined by Viterbi decoding. This means that the transition or

emission will not be seen in the training data we use for training-by-counting to

obtain , and therefore remains zero in this model, and similarly remains zero

in all future models  that will be generated in the iterative Viterbi-training

proces.

1. Explain why you can stop Viterbi training if the Viterbi decoding does not change

between two iterations?

Solution:
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Let  be the most likely explanation of  under the model  as obtained by

Viterbi decoding. We use  and training-by-counting to obtain .

Let  be the most likely explanation of  under the new model . If 

, then it is clear that next model, , obtained by training-by-

counting on  will be the same as , and there is no

need to continue the Viterbi training, since all future models will remain the

same.

1. Consider EM for HMMs (Baum-Welch training as outlined on slides 32 and 49. It

also has the property that if a parameter in the initial model  is set to zero, i.e.

if a particular transition or emission probability is set to zero, then it will remain

zero during all the iterations of the EM training. Why?

Solution:

If a particular transition or emission probability is set to zero in , then this

transition or emission cannot be part of the any explanation of our traning data 

, i.e. the expected number of times the transition or emission is observed will

be zero. This means that the transition or emission probability remains zero in

new model computed using the formulas on slide 47, and similarly remains zero

in all future models  that will be generated in the iterative EM-training proces.

Exercise 2: Questions to slides Hidden Markov Models - Selecting the initial model
parameters and using HMMs for (simpel) gene finding:

1. Consider the 7-state HMM on slides 26 that you also use in pratical exercises. As

stated on slide 27, this HMM is also relevant for gene finding, where we say that

state 3 emits non-coding symbols, states 2, 1, 0 emit coding triplets (codons) in

the left-to-right direction and states 4, 5, 6 emit coding symbols in the reverse

(right-to-left) direction.

If we are given a DNA string, say

ACGTATGCTAATCTAAACCTACGGCATGT

and information about its gene structure using the N, C, R annotation also used

in the slides and practical exercises, say

NNNNCCCCCCCCCCCCNNRRRRRRRRRNN

then we can convert this gene structure into an actual sequence of states, as

also explained on slide 30 (for a different model), as

33332102102102103345645645633

Use the above DNA string and information about its gene structure to set the

model parameters of the 7-state HMM using Traning-by-Counting. (You can

perhaps use this small example as a test case for your implementation of
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Traning-by-Counting in the practical exercises.)

Solution:

Counting and setting start probabilities:

We only see one start in state 3, so

P(start in 3) = 1

Counting and setting transition probabilities:

From the transition diagram on slide 26, we already know that some transition

probability should be 0 and 1. We 'only' need to estimate the probability of the

transitions: 3->2, 3->3, 3->4, 0->2, 0->3, 6->4, 6->3. By counting we get:

#(3->2) = 1

#(3->3) = 5

#(3->4) = 1

P(3->2) = 1 / (1+5+1) = 0,143

P(3->3) = 5 / (1+5+1) = 0,713

P(3->4) = 1 / (1+5+1) = 0,143

#(0->2) = 3

#(0->3) = 1

P(0->2) = 3 / (3+1) = 0,75

P(0->3) = 1 / (3+1) = 0,25

#(6->4) = 2

#(6->3) = 1

P(6->4) = 2 / (2+1) = 0,667

P(6->3) = 1 / (2+1) = 0,333

Counting and setting emission probabilities:

For each of the 7 states, we count how many times we see each symbol A, C, G,

and T:

State 0: 2 1 1 0

State 1: 1 0 0 3



State 2: 2 1 0 1

State 3: 2 2 2 2

State 4: 0 3 0 0

State 5: 1 0 1 1

State 6: 1 0 1 1

For each state, This translates into the following emission probabilities of A, C, G,

and T:

State 0: 0,50 0,25 0,25 0,00

State 1: 0,25 0,00 0,00 0,75

State 2: 0,50 0,25 0,00 0,25

State 3: 0,25 0,25 0,25 0,25

State 4: 0,00 1,00 0,00 0,00

State 5: 0,33 0,00 0,33 0,34

State 6: 0,33 0,00 0,33 0,34
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